Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02968
Cited By
Physics-Informed Neural Networks for Multiphysics Data Assimilation with Application to Subsurface Transport
6 December 2019
Qizhi He
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Informed Neural Networks for Multiphysics Data Assimilation with Application to Subsurface Transport"
28 / 28 papers shown
Title
Physics-informed solution reconstruction in elasticity and heat transfer using the explicit constraint force method
Conor Rowan
K. Maute
Alireza Doostan
AI4CE
58
0
0
08 May 2025
Separable Physics-Informed Neural Networks for the solution of elasticity problems
V. A. Es'kin
Danil V. Davydov
Julia V. Guréva
Alexey O. Malkhanov
Mikhail E. Smorkalov
PINN
AI4CE
43
2
0
24 Jan 2024
Computationally Efficient and Error Aware Surrogate Construction for Numerical Solutions of Subsurface Flow Through Porous Media
Aleksei G. Sorokin
Aleksandra Pachalieva
Daniel O’Malley
James M. Hyman
F. J. Hickernell
N. W. Hengartner
29
1
0
20 Oct 2023
Bayesian Physics-Informed Neural Network for the Forward and Inverse Simulation of Engineered Nano-particles Mobility in a Contaminated Aquifer
Shikhar Nilabh
F. Grandia
14
0
0
14 Aug 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
56
5
0
26 Apr 2023
Differentiable modeling to unify machine learning and physical models and advance Geosciences
Chaopeng Shen
A. Appling
Pierre Gentine
Toshiyuki Bandai
H. Gupta
...
Chris Rackauckas
Tirthankar Roy
Chonggang Xu
Binayak Mohanty
K. Lawson
AI4CE
60
14
0
10 Jan 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
34
23
0
17 Dec 2022
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
52
17
0
02 Dec 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
37
18
0
27 Oct 2022
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
Pu Ren
Chengping Rao
Su Chen
Jian-Xun Wang
Hao Sun
Yang Liu
61
42
0
25 Oct 2022
Dynamic weights enabled Physics-Informed Neural Network for simulating the mobility of Engineered Nano-particles in a contaminated aquifer
Shikhar Nilabh
F. Grandia
11
3
0
25 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
29
12
0
19 Oct 2022
A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems
S. Pourtakdoust
Amir H. Khodabakhsh
40
12
0
05 Jul 2022
A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method
Shahed Rezaei
Ali Harandi
Ahmad Moeineddin
Bai-Xiang Xu
Stefanie Reese
28
114
0
27 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
35
15
0
29 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
34
14
0
06 May 2022
Use of Multifidelity Training Data and Transfer Learning for Efficient Construction of Subsurface Flow Surrogate Models
Su Jiang
L. Durlofsky
AI4CE
27
29
0
23 Apr 2022
Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process
Thi Nguyen Khoa Nguyen
T. Dairay
Raphael Meunier
Mathilde Mougeot
PINN
AI4CE
90
30
0
31 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
38
1,205
0
14 Jan 2022
Physics-constrained deep neural network method for estimating parameters in a redox flow battery
Qizhi He
P. Stinis
A. Tartakovsky
30
33
0
21 Jun 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
53
39
0
03 May 2021
Applying physics-based loss functions to neural networks for improved generalizability in mechanics problems
Samuel J. Raymond
David B. Camarillo
PINN
AI4CE
52
12
0
30 Apr 2021
CCSNet: a deep learning modeling suite for CO
2
_2
2
storage
Gege Wen
C. Hay
S. Benson
40
73
0
05 Apr 2021
Meshless physics-informed deep learning method for three-dimensional solid mechanics
Diab W. Abueidda
Q. Lu
S. Koric
AI4CE
41
114
0
02 Dec 2020
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
S. Niaki
E. Haghighat
Trevor Campbell
Xinglong Li
R. Vaziri
AI4CE
23
205
0
27 Nov 2020
Deep-Learning based Inverse Modeling Approaches: A Subsurface Flow Example
Nanzhe Wang
Haibin Chang
Dongxiao Zhang
AI4CE
32
59
0
28 Jul 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
35
222
0
10 Jun 2020
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
52
1,498
0
10 Jul 2019
1