Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02803
Cited By
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
5 December 2019
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Tangents: Fast and Easy Infinite Neural Networks in Python"
50 / 63 papers shown
Title
Generalized Kernel Inducing Points by Duality Gap for Dataset Distillation
Tatsuya Aoyama
Hanting Yang
Hiroyuki Hanada
Satoshi Akahane
Tomonari Tanaka
...
Noriaki Hashimoto
Taro Murayama
Hanju Lee
Shinya Kojima
Ichiro Takeuchi
72
0
0
18 Feb 2025
STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation
Alireza Morsali
MohammadJavad Vaez
Hossein Soltani
A. Kazerouni
Babak Taati
Morteza Mohammad-Noori
156
1
0
02 Feb 2025
Fast Training of Sinusoidal Neural Fields via Scaling Initialization
Taesun Yeom
Sangyoon Lee
Jaeho Lee
61
2
0
07 Oct 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
60
8
0
08 Sep 2023
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
36
6
0
07 Jun 2023
Learning ground states of gapped quantum Hamiltonians with Kernel Methods
Clemens Giuliani
F. Vicentini
R. Rossi
Giuseppe Carleo
19
7
0
15 Mar 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
Multiple Imputation with Neural Network Gaussian Process for High-dimensional Incomplete Data
Zongyu Dai
Zhiqi Bu
Q. Long
35
4
0
23 Nov 2022
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
43
1
0
25 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
34
13
0
21 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
47
17
0
11 Oct 2022
Second-order regression models exhibit progressive sharpening to the edge of stability
Atish Agarwala
Fabian Pedregosa
Jeffrey Pennington
35
26
0
10 Oct 2022
Joint Embedding Self-Supervised Learning in the Kernel Regime
B. Kiani
Randall Balestriero
Yubei Chen
S. Lloyd
Yann LeCun
SSL
49
13
0
29 Sep 2022
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
25
11
0
21 Sep 2022
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen Ma
Zixuan Liu
Xue Liu
94
35
0
24 Jul 2022
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
29
8
0
28 Jun 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
30
20
0
25 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
22
53
0
17 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
33
28
0
03 Jun 2022
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky
Viktor Andersson
Balázs Kulcsár
Rebecka Jörnsten
42
5
0
25 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
27
18
0
30 Apr 2022
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
45
127
0
11 Apr 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
35
12
0
28 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
55
7
0
07 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
30
10
0
28 Feb 2022
Finding Dynamics Preserving Adversarial Winning Tickets
Xupeng Shi
Pengfei Zheng
Adam Ding
Yuan Gao
Weizhong Zhang
AAML
23
1
0
14 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
47
4
0
18 Dec 2021
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
27
21
0
15 Dec 2021
A Structured Dictionary Perspective on Implicit Neural Representations
Gizem Yüce
Guillermo Ortiz-Jiménez
Beril Besbinar
P. Frossard
31
87
0
03 Dec 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
26
75
0
29 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
229
0
27 Jul 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Bo-wen Li
37
88
0
16 Jun 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
29
43
0
12 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
34
26
0
10 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
103
17
0
23 Apr 2021
Unsupervised Shape Completion via Deep Prior in the Neural Tangent Kernel Perspective
Lei Chu
Hao Pan
Wenping Wang
3DPC
34
11
0
19 Apr 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
1
2
Next