ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02365
  4. Cited By
Lower Bounds for Non-Convex Stochastic Optimization

Lower Bounds for Non-Convex Stochastic Optimization

5 December 2019
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
ArXivPDFHTML

Papers citing "Lower Bounds for Non-Convex Stochastic Optimization"

39 / 89 papers shown
Title
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
  Nonconvex Optimization
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
62
52
0
12 Sep 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task
  Deep AUC Maximization
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
38
16
0
01 Jun 2022
Convergence of gradient descent for deep neural networks
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
47
0
09 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
31
8
0
18 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
81
17
0
15 Feb 2022
Faster Single-loop Algorithms for Minimax Optimization without Strong
  Concavity
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity
Junchi Yang
Antonio Orvieto
Aurelien Lucchi
Niao He
27
62
0
10 Dec 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
43
1
0
25 Oct 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
32
48
0
24 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent
  Reinforcement Learning
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
Kaipeng Zhang
Tamer Bacsar
46
57
0
12 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern
  Error Feedback
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
51
46
0
07 Oct 2021
Differentially Private Stochastic Optimization: New Results in Convex
  and Non-Convex Settings
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily
Cristóbal Guzmán
Michael Menart
52
55
0
12 Jul 2021
Fast Federated Learning in the Presence of Arbitrary Device
  Unavailability
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
35
96
0
08 Jun 2021
On the Convergence Rate of Off-Policy Policy Optimization Methods with
  Density-Ratio Correction
On the Convergence Rate of Off-Policy Policy Optimization Methods with Density-Ratio Correction
Jiawei Huang
Nan Jiang
19
5
0
02 Jun 2021
Randomized Stochastic Variance-Reduced Methods for Multi-Task Stochastic
  Bilevel Optimization
Randomized Stochastic Variance-Reduced Methods for Multi-Task Stochastic Bilevel Optimization
Zhishuai Guo
Quan Hu
Lijun Zhang
Tianbao Yang
61
30
0
05 May 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max
  Optimization
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
26
40
0
18 Apr 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex
  Optimization
A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex Optimization
Ran Xin
U. Khan
S. Kar
27
39
0
12 Feb 2021
Learning from History for Byzantine Robust Optimization
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
30
174
0
18 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
40
82
0
07 Dec 2020
Practical Precoding via Asynchronous Stochastic Successive Convex
  Approximation
Practical Precoding via Asynchronous Stochastic Successive Convex Approximation
Basil M. Idrees
J. Akhtar
K. Rajawat
16
6
0
03 Oct 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
  Nonconvex Optimization
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
126
0
25 Aug 2020
Riemannian stochastic recursive momentum method for non-convex
  optimization
Riemannian stochastic recursive momentum method for non-convex optimization
Andi Han
Junbin Gao
ODL
28
17
0
11 Aug 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power
  and Limitations
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
90
53
0
24 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
An Online Method for A Class of Distributionally Robust Optimization
  with Non-Convex Objectives
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
Rong Jin
Tianbao Yang
33
44
0
17 Jun 2020
Optimal Complexity in Decentralized Training
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
38
72
0
15 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for
  composite nonconvex stochastic optimization
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
33
23
0
31 May 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
32
12
0
14 May 2020
Stochastic Recursive Momentum for Policy Gradient Methods
Stochastic Recursive Momentum for Policy Gradient Methods
Huizhuo Yuan
Xiangru Lian
Ji Liu
Yuren Zhou
26
31
0
09 Mar 2020
Biased Stochastic First-Order Methods for Conditional Stochastic
  Optimization and Applications in Meta Learning
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
41
55
0
25 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
36
563
0
19 Feb 2020
Learning Halfspaces with Massart Noise Under Structured Distributions
Learning Halfspaces with Massart Noise Under Structured Distributions
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
32
59
0
13 Feb 2020
Momentum Improves Normalized SGD
Momentum Improves Normalized SGD
Ashok Cutkosky
Harsh Mehta
ODL
18
119
0
09 Feb 2020
The Complexity of Finding Stationary Points with Stochastic Gradient
  Descent
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori
Shigehito Shimizu
18
64
0
04 Oct 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite
  Nonconvex Optimization
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
16
139
0
15 Feb 2019
Previous
12