Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02365
Cited By
Lower Bounds for Non-Convex Stochastic Optimization
5 December 2019
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lower Bounds for Non-Convex Stochastic Optimization"
50 / 88 papers shown
Title
Observability conditions for neural state-space models with eigenvalues and their roots of unity
Andrew Gracyk
209
0
0
22 Apr 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Yue Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
59
1
0
16 Mar 2025
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
107
0
0
21 Feb 2025
Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity
Artavazd Maranjyan
A. Tyurin
Peter Richtárik
49
3
0
27 Jan 2025
A Nearly Optimal Single Loop Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
57
3
0
31 Dec 2024
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
42
5
0
17 Oct 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
204
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
52
2
0
28 Sep 2024
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
37
1
0
06 Aug 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
42
4
0
27 Jun 2024
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
H. Cai
Sulaiman A. Alghunaim
Ali H.Sayed
52
1
0
18 Jun 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
43
4
0
16 May 2024
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Alessandro Montenegro
Marco Mussi
Alberto Maria Metelli
Matteo Papini
48
2
0
03 May 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
66
1
0
03 Apr 2024
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
Qi Zhang
Yi Zhou
Shaofeng Zou
42
4
0
01 Apr 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
48
3
0
19 Mar 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
39
6
0
05 Mar 2024
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
40
1
0
05 Mar 2024
Tuning-Free Stochastic Optimization
Ahmed Khaled
Chi Jin
32
7
0
12 Feb 2024
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
48
12
0
06 Feb 2024
How Free is Parameter-Free Stochastic Optimization?
Amit Attia
Tomer Koren
ODL
47
5
0
05 Feb 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
33
7
0
17 Jan 2024
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
Rajeeva Laxman Karandikar
M. Vidyasagar
27
8
0
05 Dec 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
28
0
0
19 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
47
5
0
15 Oct 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
20
8
0
14 Jul 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
33
8
0
26 Jun 2023
Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
Yossi Arjevani
Gal Vinograd
37
5
0
13 Jun 2023
Convex and Non-convex Optimization Under Generalized Smoothness
Haochuan Li
Jian Qian
Yi Tian
Alexander Rakhlin
Ali Jadbabaie
13
35
0
02 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
34
6
0
25 May 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
27
0
0
23 May 2023
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
Junchi Yang
Xiang Li
Ilyas Fatkhullin
Niao He
42
15
0
21 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
36
7
0
12 May 2023
Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold
S. Schechtman
D. Tiapkin
Michael Muehlebach
Eric Moulines
27
7
0
16 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
28
7
0
07 Mar 2023
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
Tesi Xiao
Xuxing Chen
Krishnakumar Balasubramanian
Saeed Ghadimi
36
10
0
20 Feb 2023
Solving stochastic weak Minty variational inequalities without increasing batch size
Thomas Pethick
Olivier Fercoq
P. Latafat
Panagiotis Patrinos
V. Cevher
24
23
0
17 Feb 2023
SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance
Amit Attia
Tomer Koren
ODL
22
26
0
17 Feb 2023
Deterministic Nonsmooth Nonconvex Optimization
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
57
26
0
16 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
34
12
0
14 Feb 2023
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization
Zichong Li
Pinzhuo Chen
Sijia Liu
Songtao Lu
Yangyang Xu
35
17
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
73
5
0
05 Dec 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
27
15
0
03 Nov 2022
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
28
14
0
12 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
50
15
0
11 Oct 2022
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
37
12
0
03 Oct 2022
1
2
Next