ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01588
  4. Cited By
Leveraging Procedural Generation to Benchmark Reinforcement Learning

Leveraging Procedural Generation to Benchmark Reinforcement Learning

3 December 2019
K. Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
ArXivPDFHTML

Papers citing "Leveraging Procedural Generation to Benchmark Reinforcement Learning"

36 / 286 papers shown
Title
Quantifying Multimodality in World Models
Quantifying Multimodality in World Models
Andreas Sedlmeier
Michael Kölle
Robert Muller
Leo Baudrexel
Claudia Linnhoff-Popien
OffRL
22
1
0
14 Dec 2021
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Angelos Filos
Eszter Vértes
Zita Marinho
Gregory Farquhar
Diana Borsa
A. Friesen
Feryal M. P. Behbahani
Tom Schaul
André Barreto
Simon Osindero
44
7
0
08 Dec 2021
CleanRL: High-quality Single-file Implementations of Deep Reinforcement
  Learning Algorithms
CleanRL: High-quality Single-file Implementations of Deep Reinforcement Learning Algorithms
Shengyi Huang
Rousslan Fernand Julien Dossa
Chang Ye
Jeff Braga
OffRL
11
0
0
16 Nov 2021
B-Pref: Benchmarking Preference-Based Reinforcement Learning
B-Pref: Benchmarking Preference-Based Reinforcement Learning
Kimin Lee
Laura M. Smith
Anca Dragan
Pieter Abbeel
OffRL
40
93
0
04 Nov 2021
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual
  Reinforcement Learning Agents
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual Reinforcement Learning Agents
Sam Powers
Eliot Xing
Eric Kolve
Roozbeh Mottaghi
Abhinav Gupta
OffRL
31
38
0
19 Oct 2021
GrowSpace: Learning How to Shape Plants
GrowSpace: Learning How to Shape Plants
Yasmeen Hitti
Ionelia Buzatu
Manuel Del Verme
M. Lefsrud
Florian Golemo
A. Durand
19
2
0
15 Oct 2021
OPEn: An Open-ended Physics Environment for Learning Without a Task
OPEn: An Open-ended Physics Environment for Learning Without a Task
Chuang Gan
Abhishek Bhandwaldar
Antonio Torralba
J. Tenenbaum
Phillip Isola
LRM
133
4
0
13 Oct 2021
Extending Environments To Measure Self-Reflection In Reinforcement
  Learning
Extending Environments To Measure Self-Reflection In Reinforcement Learning
S. Alexander
Michael Castaneda
K. Compher
Oscar Martinez
32
6
0
13 Oct 2021
Planning from Pixels in Environments with Combinatorially Hard Search
  Spaces
Planning from Pixels in Environments with Combinatorially Hard Search Spaces
Marco Bagatella
Miroslav Olsák
Michal Rolínek
Georg Martius
OffRL
21
6
0
12 Oct 2021
Situated Dialogue Learning through Procedural Environment Generation
Situated Dialogue Learning through Procedural Environment Generation
Prithviraj Ammanabrolu
Renee Jia
Mark O. Riedl
109
14
0
07 Oct 2021
Replay-Guided Adversarial Environment Design
Replay-Guided Adversarial Environment Design
Minqi Jiang
Michael Dennis
Jack Parker-Holder
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
129
95
0
06 Oct 2021
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
OffRL
41
23
0
05 Oct 2021
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning
  Research
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research
Mikayel Samvelyan
Robert Kirk
Vitaly Kurin
Jack Parker-Holder
Minqi Jiang
Eric Hambro
Fabio Petroni
Heinrich Küttler
Edward Grefenstette
Tim Rocktaschel
OffRL
238
89
0
27 Sep 2021
MetaDrive: Composing Diverse Driving Scenarios for Generalizable
  Reinforcement Learning
MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning
Quanyi Li
Zhenghao Peng
Lan Feng
Qihang Zhang
Zhenghai Xue
Bolei Zhou
39
232
0
26 Sep 2021
Benchmarking Augmentation Methods for Learning Robust Navigation Agents:
  the Winning Entry of the 2021 iGibson Challenge
Benchmarking Augmentation Methods for Learning Robust Navigation Agents: the Winning Entry of the 2021 iGibson Challenge
Naoki Yokoyama
Qian Luo
Dhruv Batra
Sehoon Ha
38
11
0
22 Sep 2021
Benchmarking the Spectrum of Agent Capabilities
Benchmarking the Spectrum of Agent Capabilities
Danijar Hafner
ELM
33
127
0
14 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
59
637
0
30 Aug 2021
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit
  Partial Observability
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability
Dibya Ghosh
Jad Rahme
Aviral Kumar
Amy Zhang
Ryan P. Adams
Sergey Levine
OffRL
278
109
0
13 Jul 2021
Generalization of Reinforcement Learning with Policy-Aware Adversarial
  Data Augmentation
Generalization of Reinforcement Learning with Policy-Aware Adversarial Data Augmentation
Hanping Zhang
Yuhong Guo
30
23
0
29 Jun 2021
Discovering Generalizable Skills via Automated Generation of Diverse
  Tasks
Discovering Generalizable Skills via Automated Generation of Diverse Tasks
Kuan Fang
Yuke Zhu
Silvio Savarese
Li Fei-Fei
48
6
0
26 Jun 2021
SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual
  Policies
SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies
Linxi Fan
Guanzhi Wang
De-An Huang
Zhiding Yu
Li Fei-Fei
Yuke Zhu
Anima Anandkumar
OffRL
27
63
0
17 Jun 2021
Heuristic-Guided Reinforcement Learning
Heuristic-Guided Reinforcement Learning
Ching-An Cheng
Andrey Kolobov
Adith Swaminathan
OffRL
30
61
0
05 Jun 2021
Goal Misgeneralization in Deep Reinforcement Learning
Goal Misgeneralization in Deep Reinforcement Learning
L. Langosco
Jack Koch
Lee D. Sharkey
J. Pfau
Laurent Orseau
David M. Krueger
30
78
0
28 May 2021
Safety Enhancement for Deep Reinforcement Learning in Autonomous
  Separation Assurance
Safety Enhancement for Deep Reinforcement Learning in Autonomous Separation Assurance
Wei Guo
Marc Brittain
Peng Wei
29
18
0
05 May 2021
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL
Clément Romac
Rémy Portelas
Katja Hofmann
Pierre-Yves Oudeyer
27
21
0
17 Mar 2021
Sample-efficient Reinforcement Learning Representation Learning with
  Curiosity Contrastive Forward Dynamics Model
Sample-efficient Reinforcement Learning Representation Learning with Curiosity Contrastive Forward Dynamics Model
Thanh Nguyen
Tung M. Luu
Thang Vu
Chang D. Yoo
23
17
0
15 Mar 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
75
980
0
03 Mar 2021
Sparse Attention Guided Dynamic Value Estimation for Single-Task
  Multi-Scene Reinforcement Learning
Sparse Attention Guided Dynamic Value Estimation for Single-Task Multi-Scene Reinforcement Learning
Jaskirat Singh
Liang Zheng
OffRL
21
3
0
14 Feb 2021
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
27
178
0
01 Sep 2020
Robust Deep Reinforcement Learning through Adversarial Loss
Robust Deep Reinforcement Learning through Adversarial Loss
Tuomas P. Oikarinen
Wang Zhang
Alexandre Megretski
Luca Daniel
Tsui-Wei Weng
AAML
44
93
0
05 Aug 2020
Automatic Data Augmentation for Generalization in Deep Reinforcement
  Learning
Automatic Data Augmentation for Generalization in Deep Reinforcement Learning
Roberta Raileanu
M. Goldstein
Denis Yarats
Ilya Kostrikov
Rob Fergus
OffRL
22
109
0
23 Jun 2020
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
38
125
0
22 Jun 2020
Deep Reinforcement and InfoMax Learning
Deep Reinforcement and InfoMax Learning
Bogdan Mazoure
Rémi Tachet des Combes
T. Doan
Philip Bachman
R. Devon Hjelm
AI4CE
25
108
0
12 Jun 2020
Transient Non-Stationarity and Generalisation in Deep Reinforcement
  Learning
Transient Non-Stationarity and Generalisation in Deep Reinforcement Learning
Maximilian Igl
Gregory Farquhar
Jelena Luketina
Wendelin Boehmer
Shimon Whiteson
27
84
0
10 Jun 2020
Rotation, Translation, and Cropping for Zero-Shot Generalization
Rotation, Translation, and Cropping for Zero-Shot Generalization
Chang Ye
Ahmed Khalifa
Philip Bontrager
Julian Togelius
32
38
0
27 Jan 2020
Unity: A General Platform for Intelligent Agents
Unity: A General Platform for Intelligent Agents
Arthur Juliani
Vincent-Pierre Berges
Esh Vckay
Andrew Cohen
Jonathan Harper
...
Chris Goy
Yuan Gao
Hunter Henry
Marwan Mattar
Danny Lange
16
808
0
07 Sep 2018
Previous
123456