ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.13071
  4. Cited By
Increasing Generality in Machine Learning through Procedural Content
  Generation

Increasing Generality in Machine Learning through Procedural Content Generation

29 November 2019
S. Risi
Julian Togelius
ArXivPDFHTML

Papers citing "Increasing Generality in Machine Learning through Procedural Content Generation"

19 / 19 papers shown
Title
Causally Aligned Curriculum Learning
Causally Aligned Curriculum Learning
Mingxuan Li
Junzhe Zhang
Elias Bareinboim
CML
61
3
0
21 Mar 2025
Measuring Diversity of Game Scenarios
Measuring Diversity of Game Scenarios
Yuchen Li
Ziqi Wang
Qingquan Zhang
Jialin Liu
Jiaheng Liu
63
2
0
17 Jan 2025
Variational Offline Multi-agent Skill Discovery
Variational Offline Multi-agent Skill Discovery
Jiayu Chen
Bhargav Ganguly
Tian-Shing Lan
OffRL
69
1
0
26 May 2024
Structurally Flexible Neural Networks: Evolving the Building Blocks for
  General Agents
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents
J. Pedersen
Erwan Plantec
Eleni Nisioti
Milton L. Montero
Sebastian Risi
55
1
0
06 Apr 2024
PCGPT: Procedural Content Generation via Transformers
PCGPT: Procedural Content Generation via Transformers
Sajad Mohaghegh
Mohammad Amin Ramezan Dehnavi
Golnoosh Abdollahinejad
Matin Hashemi
ViT
18
2
0
03 Oct 2023
Human-Timescale Adaptation in an Open-Ended Task Space
Human-Timescale Adaptation in an Open-Ended Task Space
Adaptive Agent Team
Jakob Bauer
Kate Baumli
Satinder Baveja
Feryal M. P. Behbahani
...
Jakub Sygnowski
K. Tuyls
Sarah York
Alexander Zacherl
Lei Zhang
LM&Ro
OffRL
AI4CE
LRM
38
108
0
18 Jan 2023
SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement
  Learning
SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning
Benjamin Ellis
Jonathan Cook
S. Moalla
Mikayel Samvelyan
Mingfei Sun
Anuj Mahajan
Jakob N. Foerster
Shimon Whiteson
19
83
0
14 Dec 2022
Powderworld: A Platform for Understanding Generalization via Rich Task
  Distributions
Powderworld: A Platform for Understanding Generalization via Rich Task Distributions
Kevin Frans
Phillip Isola
OffRL
44
9
0
23 Nov 2022
Learning General World Models in a Handful of Reward-Free Deployments
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
55
8
0
23 Oct 2022
GriddlyJS: A Web IDE for Reinforcement Learning
GriddlyJS: A Web IDE for Reinforcement Learning
C. Bamford
Minqi Jiang
Mikayel Samvelyan
Tim Rocktaschel
OnRL
38
4
0
13 Jul 2022
Deep Surrogate Assisted Generation of Environments
Deep Surrogate Assisted Generation of Environments
Varun Bhatt
Bryon Tjanaka
Matthew C. Fontaine
Stefanos Nikolaidis
53
35
0
09 Jun 2022
Evolving Curricula with Regret-Based Environment Design
Evolving Curricula with Regret-Based Environment Design
Jack Parker-Holder
Minqi Jiang
Michael Dennis
Mikayel Samvelyan
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
31
117
0
02 Mar 2022
Replay-Guided Adversarial Environment Design
Replay-Guided Adversarial Environment Design
Minqi Jiang
Michael Dennis
Jack Parker-Holder
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
129
95
0
06 Oct 2021
Active Reinforcement Learning over MDPs
Qi Yang
Peng Yang
K. Tang
41
0
0
05 Aug 2021
Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros
  Study
Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros Study
Tianye Shu
Jialin Liu
Georgios N. Yannakakis
27
40
0
30 Jun 2021
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
38
125
0
22 Jun 2020
Finding Game Levels with the Right Difficulty in a Few Trials through
  Intelligent Trial-and-Error
Finding Game Levels with the Right Difficulty in a Few Trials through Intelligent Trial-and-Error
Miguel González Duque
Rasmus Berg Palm
David R Ha
S. Risi
25
32
0
15 May 2020
Evolving Mario Levels in the Latent Space of a Deep Convolutional
  Generative Adversarial Network
Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network
Vanessa Volz
Jacob Schrum
Jialin Liu
Simon Lucas
Adam M. Smith
S. Risi
GAN
65
230
0
02 May 2018
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
234
809
0
13 Nov 2016
1