ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11705
  4. Cited By
Edge-Guided Occlusion Fading Reduction for a Light-Weighted
  Self-Supervised Monocular Depth Estimation

Edge-Guided Occlusion Fading Reduction for a Light-Weighted Self-Supervised Monocular Depth Estimation

26 November 2019
Kuo-Shiuan Peng
G. Ditzler
J. Rozenblit
    MDE
ArXiv (abs)PDFHTML

Papers citing "Edge-Guided Occlusion Fading Reduction for a Light-Weighted Self-Supervised Monocular Depth Estimation"

13 / 13 papers shown
Title
Semi-Supervised Monocular Depth Estimation with Left-Right Consistency
  Using Deep Neural Network
Semi-Supervised Monocular Depth Estimation with Left-Right Consistency Using Deep Neural Network
A. Amiri
S. Loo
Hong Zhang
MDE
54
56
0
18 May 2019
Geometry meets semantics for semi-supervised monocular depth estimation
Geometry meets semantics for semi-supervised monocular depth estimation
Pierluigi Zama Ramirez
Matteo Poggi
Fabio Tosi
S. Mattoccia
Luigi Di Stefano
MDE
77
113
0
09 Oct 2018
Light-Weight RefineNet for Real-Time Semantic Segmentation
Light-Weight RefineNet for Real-Time Semantic Segmentation
Vladimir Nekrasov
Chunhua Shen
Ian Reid
SSegVLM
65
148
0
08 Oct 2018
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry
  with Deep Feature Reconstruction
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
Huangying Zhan
Ravi Garg
C. Weerasekera
Kejie Li
Harsh Agarwal
Ian Reid
MDE
53
633
0
11 Mar 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
54
1,144
0
06 Mar 2018
Rethinking Atrous Convolution for Semantic Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
232
8,481
0
17 Jun 2017
SfM-Net: Learning of Structure and Motion from Video
SfM-Net: Learning of Structure and Motion from Video
Sudheendra Vijayanarasimhan
Susanna Ricco
Cordelia Schmid
Rahul Sukthankar
Katerina Fragkiadaki
MDE
68
443
0
25 Apr 2017
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Yevhen Kuznietsov
J. Stückler
Bastian Leibe
MDESSL
147
672
0
09 Feb 2017
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,641
0
06 Apr 2016
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
309
7,389
0
05 Jun 2015
Learning Depth from Single Monocular Images Using Deep Convolutional
  Neural Fields
Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
Fayao Liu
Chunhua Shen
Guosheng Lin
Ian Reid
MDE
166
1,198
0
26 Feb 2015
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLMMDE
209
2,683
0
18 Nov 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE3DPC3DV
239
4,063
0
09 Jun 2014
1