Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.09107
Cited By
OmniFold: A Method to Simultaneously Unfold All Observables
20 November 2019
Anders Andreassen
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
Jesse Thaler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"OmniFold: A Method to Simultaneously Unfold All Observables"
11 / 11 papers shown
Title
Generative Unfolding with Distribution Mapping
A. Butter
S. Diefenbacher
Nathan Huetsch
Vinicius Mikuni
Benjamin Nachman
Sofia Palacios Schweitzer
Tilman Plehn
DiffM
51
1
0
04 Nov 2024
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
47
3
0
29 Apr 2024
Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion
Alexander Shmakov
Kevin Greif
M. Fenton
A. Ghosh
Pierre Baldi
D. Whiteson
DiffM
127
9
0
22 Apr 2024
Unbinned Profiled Unfolding
Jay Chan
Benjamin Nachman
32
7
0
10 Feb 2023
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
22
27
0
01 Jun 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen
Benjamin Nachman
David Shih
22
112
0
14 Jan 2020
How to GAN away Detector Effects
Marco Bellagente
A. Butter
Gregor Kasieczka
Tilman Plehn
R. Winterhalder
GAN
21
86
0
01 Dec 2019
Machine learning approach to inverse problem and unfolding procedure
N. Gagunashvili
50
20
0
12 Apr 2010
1