ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05020
  4. Cited By
Generative adversarial networks (GAN) based efficient sampling of
  chemical space for inverse design of inorganic materials

Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials

12 November 2019
Yabo Dan
Yong Zhao
Xiang Li
Shaobo Li
Ming Hu
Jianjun Hu
    AI4CEGAN
ArXiv (abs)PDFHTML

Papers citing "Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials"

13 / 13 papers shown
Title
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Haoxin Li
Boyang Li
CoGe
145
1
0
03 Mar 2025
End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction
End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction
Qingsi Lai
Lin Yao
Zhifeng Gao
Siyuan Liu
Hongshuai Wang
...
Di He
Liwei Wang
Cheng Wang
Guolin Ke
Guolin Ke
67
8
0
08 Jan 2024
Study of Deep Generative Models for Inorganic Chemical Compositions
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
57
13
0
25 Oct 2019
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Jordan Hoffmann
Louis Maestrati
Yoshihide Sawada
Jian Tang
Jean Michel D. Sellier
Yoshua Bengio
DiffM3DV
77
67
0
03 Sep 2019
Continuous Dice Coefficient: a Method for Evaluating Probabilistic
  Segmentations
Continuous Dice Coefficient: a Method for Evaluating Probabilistic Segmentations
R. Shamir
Yuval Duchin
Jinyoung Kim
Guillermo Sapiro
N. Harel
72
138
0
26 Jun 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE3DV
76
328
0
11 Mar 2019
CrystalGAN: Learning to Discover Crystallographic Structures with
  Generative Adversarial Networks
CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks
Asma Nouira
Nataliya Sokolovska
J. Crivello
GAN
49
87
0
26 Oct 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
226
182
0
30 Apr 2018
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,827
0
26 Jan 2017
Variational Autoencoder for Deep Learning of Images, Labels and Captions
Variational Autoencoder for Deep Learning of Images, Labels and Captions
Yunchen Pu
Zhe Gan
Ricardo Henao
Xin Yuan
Chunyuan Li
Andrew Stevens
Lawrence Carin
BDLCoGe
86
755
0
28 Sep 2016
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDLDRL
99
1,747
0
19 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,237
0
12 Jun 2016
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,328
0
11 Feb 2015
1