Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00809
Cited By
Enhanced Convolutional Neural Tangent Kernels
3 November 2019
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhanced Convolutional Neural Tangent Kernels"
35 / 35 papers shown
Title
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
55
2
0
30 May 2024
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Yuxiao Wen
Arthur Jacot
68
6
0
12 Feb 2024
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
30
0
0
26 Jan 2023
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
31
5
0
20 Oct 2022
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Yubei Chen
Zeyu Yun
Yi Ma
Bruno A. Olshausen
Yann LeCun
54
8
0
30 Sep 2022
Provable Acceleration of Nesterov's Accelerated Gradient Method over Heavy Ball Method in Training Over-Parameterized Neural Networks
Xin Liu
Wei Tao
Wei Li
Dazhi Zhan
Jun Wang
Zhisong Pan
ODL
32
1
0
08 Aug 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
35
20
0
25 Jun 2022
TKIL: Tangent Kernel Approach for Class Balanced Incremental Learning
Jinlin Xiang
Eli Shlizerman
CLL
19
8
0
17 Jun 2022
Overcoming the Spectral Bias of Neural Value Approximation
Ge Yang
Anurag Ajay
Pulkit Agrawal
36
25
0
09 Jun 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
31
1
0
01 Mar 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
31
17
0
24 Feb 2022
Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural Networks
L. Benigni
Sandrine Péché
42
8
0
13 Jan 2022
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
32
21
0
15 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
Quantum tangent kernel
Norihito Shirai
K. Kubo
K. Mitarai
Keisuke Fujii
38
27
0
04 Nov 2021
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
25
9
0
29 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
231
0
27 Jul 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
41
13
0
29 Apr 2021
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
32
32
0
02 Mar 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
55
89
0
25 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
41
3
0
12 Jan 2021
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
130
161
0
24 Dec 2020
Power of data in quantum machine learning
Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
25
624
0
03 Nov 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
23
89
0
03 Jul 2020
A Revision of Neural Tangent Kernel-based Approaches for Neural Networks
Kyungsu Kim
A. Lozano
Eunho Yang
AAML
40
0
0
02 Jul 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
22
67
0
17 Jun 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Modularizing Deep Learning via Pairwise Learning With Kernels
Shiyu Duan
Shujian Yu
José C. Príncipe
MoMe
27
20
0
12 May 2020
Provable Training of a ReLU Gate with an Iterative Non-Gradient Algorithm
Sayar Karmakar
Anirbit Mukherjee
14
7
0
08 May 2020
On Infinite-Width Hypernetworks
Etai Littwin
Tomer Galanti
Lior Wolf
Greg Yang
14
11
0
27 Mar 2020
Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations
Aditya Golatkar
Alessandro Achille
Stefano Soatto
MU
OOD
27
189
0
05 Mar 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
1