Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00483
Cited By
v1
v2
v3 (latest)
Explanation by Progressive Exaggeration
1 November 2019
Sumedha Singla
Brian Pollack
Junxiang Chen
Kayhan Batmanghelich
FAtt
MedIm
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explanation by Progressive Exaggeration"
29 / 79 papers shown
Title
Robust Feature-Level Adversaries are Interpretability Tools
Stephen Casper
Max Nadeau
Dylan Hadfield-Menell
Gabriel Kreiman
AAML
203
28
0
07 Oct 2021
Designing Counterfactual Generators using Deep Model Inversion
Jayaraman J. Thiagarajan
V. Narayanaswamy
Deepta Rajan
J. Liang
Akshay S. Chaudhari
A. Spanias
DiffM
62
22
0
29 Sep 2021
Explainability Requires Interactivity
Matthias Kirchler
M. Graf
Marius Kloft
C. Lippert
FAtt
AAML
HAI
65
1
0
16 Sep 2021
CounterNet: End-to-End Training of Prediction Aware Counterfactual Explanations
Hangzhi Guo
T. Nguyen
A. Yadav
OffRL
68
17
0
15 Sep 2021
VAE-CE: Visual Contrastive Explanation using Disentangled VAEs
Y. Poels
Vlado Menkovski
CoGe
DRL
87
3
0
20 Aug 2021
Neural-to-Tree Policy Distillation with Policy Improvement Criterion
Zhaorong Li
Yang Yu
Yingfeng Chen
Ke Chen
Zhipeng Hu
Changjie Fan
45
5
0
16 Aug 2021
Using Causal Analysis for Conceptual Deep Learning Explanation
Sumedha Singla
Stephen Wallace
Sofia Triantafillou
Kayhan Batmanghelich
CML
58
15
0
10 Jul 2021
Meaningfully Debugging Model Mistakes using Conceptual Counterfactual Explanations
Abubakar Abid
Mert Yuksekgonul
James Zou
CML
123
64
0
24 Jun 2021
Leveraging Conditional Generative Models in a General Explanation Framework of Classifier Decisions
Martin Charachon
P. Cournède
C´eline Hudelot
R. Ardon
51
5
0
21 Jun 2021
DISSECT: Disentangled Simultaneous Explanations via Concept Traversals
Asma Ghandeharioun
Been Kim
Chun-Liang Li
Brendan Jou
B. Eoff
Rosalind W. Picard
AAML
113
54
0
31 May 2021
Two4Two: Evaluating Interpretable Machine Learning - A Synthetic Dataset For Controlled Experiments
M. Schuessler
Philipp Weiß
Leon Sixt
75
3
0
06 May 2021
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
130
153
0
27 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
109
58
0
18 Mar 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
94
148
0
26 Feb 2021
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays
Joseph Paul Cohen
Rupert Brooks
Sovann En
Evan Zucker
Anuj Pareek
M. Lungren
Akshay S. Chaudhari
FAtt
MedIm
97
4
0
18 Feb 2021
Generative Counterfactuals for Neural Networks via Attribute-Informed Perturbation
Fan Yang
Ninghao Liu
Mengnan Du
X. Hu
OOD
61
17
0
18 Jan 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
186
177
0
13 Jan 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
152
109
0
11 Jan 2021
Concept-based model explanations for Electronic Health Records
Diana Mincu
Eric Loreaux
Shaobo Hou
Sebastien Baur
Ivan V. Protsyuk
Martin G. Seneviratne
A. Mottram
Nenad Tomašev
Alan Karthikesanlingam
Jessica Schrouff
84
28
0
03 Dec 2020
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
65
10
0
14 Oct 2020
Explaining Clinical Decision Support Systems in Medical Imaging using Cycle-Consistent Activation Maximization
Alexander Katzmann
O. Taubmann
Stephen Ahmad
Alexander Muhlberg
M. Sühling
H. Groß
MedIm
43
20
0
09 Oct 2020
Counterfactual Explanation and Causal Inference in Service of Robustness in Robot Control
Simón C. Smith
S. Ramamoorthy
84
14
0
18 Sep 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
79
105
0
10 Sep 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
54
101
0
19 Aug 2020
Understanding and Diagnosing Vulnerability under Adversarial Attacks
Haizhong Zheng
Ziqi Zhang
Honglak Lee
A. Prakash
FAtt
AAML
76
6
0
17 Jul 2020
Towards causal benchmarking of bias in face analysis algorithms
Guha Balakrishnan
Yuanjun Xiong
Wei Xia
Pietro Perona
CVBM
82
90
0
13 Jul 2020
Scientific Discovery by Generating Counterfactuals using Image Translation
Arunachalam Narayanaswamy
Subhashini Venugopalan
D. Webster
L. Peng
G. Corrado
...
Abigail E. Huang
Siva Balasubramanian
Michael P. Brenner
Phil Q. Nelson
A. Varadarajan
DiffM
MedIm
134
21
0
10 Jul 2020
COVID-19 Image Data Collection: Prospective Predictions Are the Future
Joseph Paul Cohen
Paul Morrison
Lan Dao
Karsten Roth
T. Duong
Marzyeh Ghassemi
106
781
0
22 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
133
245
0
11 Jun 2020
Previous
1
2