Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00294
Cited By
v1
v2 (latest)
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
1 November 2019
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments"
42 / 42 papers shown
Title
ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition
Daolang Huang
Xinyi Wen
Ayush Bharti
Samuel Kaski
Luigi Acerbi
25
0
0
08 Jun 2025
Performance Comparisons of Reinforcement Learning Algorithms for Sequential Experimental Design
Yasir Zubayr Barlas
Kizito Salako
61
1
0
07 Mar 2025
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
121
3
0
03 Jan 2025
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
136
1
0
15 Oct 2024
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
93
0
0
15 Oct 2024
Amortized Active Causal Induction with Deep Reinforcement Learning
Yashas Annadani
P. Tigas
Stefan Bauer
Adam Foster
78
1
0
26 May 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
186
8
0
08 Apr 2024
BEACON: Bayesian Experimental design Acceleration with Conditional Normalizing flows
−
-
−
a case study in optimal monitor well placement for CO
2
_2
2
sequestration
Rafael Orozco
A. Gahlot
Felix J. Herrmann
52
0
0
28 Mar 2024
Probabilistic Bayesian optimal experimental design using conditional normalizing flows
Rafael Orozco
Felix J. Herrmann
Peng Chen
73
6
0
28 Feb 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
60
2
0
23 Feb 2024
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
83
2
0
11 Feb 2024
Tractable Optimal Experimental Design using Transport Maps
Karina Koval
Roland Herzog
Robert Scheichl
OT
113
9
0
15 Jan 2024
Bayesian Active Learning in the Presence of Nuisance Parameters
Sabina J. Sloman
Ayush Bharti
Julien Martinelli
Samuel Kaski
88
4
0
23 Oct 2023
On Estimating the Gradient of the Expected Information Gain in Bayesian Experimental Design
Ziqiao Ao
Jinglai Li
81
2
0
19 Aug 2023
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference
Vincent D. Zaballa
E. Hui
74
2
0
27 Jun 2023
Variational Sequential Optimal Experimental Design using Reinforcement Learning
Wanggang Shen
Jiayuan Dong
Xun Huan
66
3
0
17 Jun 2023
Statistically Efficient Bayesian Sequential Experiment Design via Reinforcement Learning with Cross-Entropy Estimators
Tom Blau
Iadine Chadès
Amir Dezfouli
Daniel M. Steinberg
Edwin V. Bonilla
79
1
0
29 May 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
125
88
0
28 Feb 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
102
3
0
27 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
94
13
0
21 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
97
55
0
01 Feb 2023
Design Amortization for Bayesian Optimal Experimental Design
Noble Kennamer
Steven Walton
Alexander Ihler
66
5
0
07 Oct 2022
When Bioprocess Engineering Meets Machine Learning: A Survey from the Perspective of Automated Bioprocess Development
Nghia Duong-Trung
Stefan Born
Jong Woo Kim
M. Schermeyer
Katharina Paulick
...
Thorben Werner
Randolf Scholz
Lars Schmidt-Thieme
Peter Neubauer
Ernesto Martinez
84
20
0
02 Sep 2022
An Optimal Likelihood Free Method for Biological Model Selection
Vincent D. Zaballa
E. Hui
59
0
0
03 Aug 2022
Efficient Real-world Testing of Causal Decision Making via Bayesian Experimental Design for Contextual Optimisation
Desi R. Ivanova
Joel Jennings
Cheng Zhang
Adam Foster
CML
62
2
0
12 Jul 2022
Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
Jinwook Go
T. Isaac
58
12
0
20 May 2022
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
66
8
0
29 Apr 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
71
11
0
08 Mar 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
157
50
0
03 Mar 2022
Optimizing Sequential Experimental Design with Deep Reinforcement Learning
Tom Blau
Edwin V. Bonilla
Iadine Chadès
Amir Dezfouli
BDL
OffRL
84
44
0
02 Feb 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
132
48
0
03 Nov 2021
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Qing Guo
Junya Chen
Dong Wang
Yuewei Yang
Xinwei Deng
Lawrence Carin
Fan Li
Jing-Zheng Huang
Chenyang Tao
93
21
0
02 Jul 2021
Decomposed Mutual Information Estimation for Contrastive Representation Learning
Alessandro Sordoni
Nouha Dziri
Hannes Schulz
Geoffrey J. Gordon
Philip Bachman
Rémi Tachet des Combes
SSL
79
30
0
25 Jun 2021
Investigating the Role of Negatives in Contrastive Representation Learning
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Dipendra Kumar Misra
SSL
88
54
0
18 Jun 2021
Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness
Adam Foster
Árpi Vezér
C. A. Glastonbury
Páidí Creed
Sam Abujudeh
Aaron Sim
FaML
41
6
0
15 Jun 2021
Targeted Active Learning for Bayesian Decision-Making
Louis Filstroff
Iiris Sundin
P. Mikkola
A. Tiulpin
Juuso Kylmäoja
Samuel Kaski
71
5
0
08 Jun 2021
A Hybrid Gradient Method to Designing Bayesian Experiments for Implicit Models
Jiaxin Zhang
Sirui Bi
Guannan Zhang
25
0
0
14 Mar 2021
A Scalable Gradient-Free Method for Bayesian Experimental Design with Implicit Models
Jiaxin Zhang
Sirui Bi
Guannan Zhang
63
9
0
14 Mar 2021
Active Testing: Sample-Efficient Model Evaluation
Jannik Kossen
Sebastian Farquhar
Y. Gal
Tom Rainforth
VLM
91
53
0
09 Mar 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
78
85
0
03 Mar 2021
Unbiased MLMC stochastic gradient-based optimization of Bayesian experimental designs
T. Goda
Tomohiko Hironaka
Wataru Kitade
Adam Foster
84
23
0
18 May 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
89
66
0
19 Feb 2020
1