ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.18337
41
5

Probabilistic Bayesian optimal experimental design using conditional normalizing flows

28 February 2024
Rafael Orozco
Felix J. Herrmann
Peng Chen
ArXivPDFHTML
Abstract

Bayesian optimal experimental design (OED) seeks to conduct the most informative experiment under budget constraints to update the prior knowledge of a system to its posterior from the experimental data in a Bayesian framework. Such problems are computationally challenging because of (1) expensive and repeated evaluation of some optimality criterion that typically involves a double integration with respect to both the system parameters and the experimental data, (2) suffering from the curse-of-dimensionality when the system parameters and design variables are high-dimensional, (3) the optimization is combinatorial and highly non-convex if the design variables are binary, often leading to non-robust designs. To make the solution of the Bayesian OED problem efficient, scalable, and robust for practical applications, we propose a novel joint optimization approach. This approach performs simultaneous (1) training of a scalable conditional normalizing flow (CNF) to efficiently maximize the expected information gain (EIG) of a jointly learned experimental design (2) optimization of a probabilistic formulation of the binary experimental design with a Bernoulli distribution. We demonstrate the performance of our proposed method for a practical MRI data acquisition problem, one of the most challenging Bayesian OED problems that has high-dimensional (320 ×\times× 320) parameters at high image resolution, high-dimensional (640 ×\times× 386) observations, and binary mask designs to select the most informative observations.

View on arXiv
Comments on this paper