ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00218
  4. Cited By
Statistical Model Aggregation via Parameter Matching

Statistical Model Aggregation via Parameter Matching

1 November 2019
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
    FedML
ArXivPDFHTML

Papers citing "Statistical Model Aggregation via Parameter Matching"

14 / 14 papers shown
Title
Bayesian Nonparametric Federated Learning of Neural Networks
Bayesian Nonparametric Federated Learning of Neural Networks
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
Y. Khazaeni
FedML
124
728
0
28 May 2019
Scalable inference of topic evolution via models for latent geometric
  structures
Scalable inference of topic evolution via models for latent geometric structures
Mikhail Yurochkin
Zhiwei Fan
Aritra Guha
Paraschos Koutris
X. Nguyen
45
11
0
24 Sep 2018
Collective Online Learning of Gaussian Processes in Massive Multi-Agent
  Systems
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems
T. Hoang
Q. Hoang
K. H. Low
Jonathan P. How
32
7
0
23 May 2018
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
T. Hoang
Q. Hoang
Ruofei Ouyang
K. H. Low
59
54
0
19 Nov 2017
Differentially Private Bayesian Learning on Distributed Data
Differentially Private Bayesian Learning on Distributed Data
Mikko A. Heikkilä
Eemil Lagerspetz
Samuel Kaski
Kana Shimizu
Sasu Tarkoma
Antti Honkela
FedML
134
59
0
03 Mar 2017
Understanding Probabilistic Sparse Gaussian Process Approximations
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
44
259
0
15 Jun 2016
Bayesian inference in hierarchical models by combining independent
  posteriors
Bayesian inference in hierarchical models by combining independent posteriors
Ritabrata Dutta
P. Blomstedt
Samuel Kaski
TPM
23
2
0
30 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
132
70
0
31 Dec 2015
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
Trevor Campbell
Julian Straub
John W. Fisher III
Jonathan P. How
45
41
0
30 Oct 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
Distributed Gaussian Processes
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
68
341
0
10 Feb 2015
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
67
150
0
06 Feb 2014
Joint modeling of multiple time series via the beta process with
  application to motion capture segmentation
Joint modeling of multiple time series via the beta process with application to motion capture segmentation
E. Fox
M. C. Hughes
Erik B. Sudderth
Michael I. Jordan
83
96
0
22 Aug 2013
1