ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12686
  4. Cited By
Growing axons: greedy learning of neural networks with application to
  function approximation

Growing axons: greedy learning of neural networks with application to function approximation

28 October 2019
Daria Fokina
Ivan V. Oseledets
ArXivPDFHTML

Papers citing "Growing axons: greedy learning of neural networks with application to function approximation"

6 / 6 papers shown
Title
Parameter-varying neural ordinary differential equations with
  partition-of-unity networks
Parameter-varying neural ordinary differential equations with partition-of-unity networks
Kookjin Lee
N. Trask
22
2
0
01 Oct 2022
Numerical Computation of Partial Differential Equations by Hidden-Layer
  Concatenated Extreme Learning Machine
Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
Naxian Ni
S. Dong
29
20
0
24 Apr 2022
SPINN: Sparse, Physics-based, and partially Interpretable Neural
  Networks for PDEs
SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
PINN
AI4CE
27
76
0
25 Feb 2021
Partition of unity networks: deep hp-approximation
Partition of unity networks: deep hp-approximation
Kookjin Lee
N. Trask
Ravi G. Patel
Mamikon A. Gulian
E. Cyr
22
30
0
27 Jan 2021
Deep Neural Networks Are Effective At Learning High-Dimensional
  Hilbert-Valued Functions From Limited Data
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
34
29
0
11 Dec 2020
Deep Neural Network Approximation Theory
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
14
207
0
08 Jan 2019
1