ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09457
  4. Cited By
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods

Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods

21 October 2019
Eyke Hüllermeier
Willem Waegeman
    PER
    UD
ArXivPDFHTML

Papers citing "Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods"

50 / 550 papers shown
Title
Uncertainty Quantification for Prior-Data Fitted Networks using Martingale Posteriors
Uncertainty Quantification for Prior-Data Fitted Networks using Martingale Posteriors
Thomas Nagler
David Rügamer
UQCV
12
0
0
16 May 2025
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
56
0
0
08 May 2025
xTrace: A Facial Expressive Behaviour Analysis Tool for Continuous Affect Recognition
xTrace: A Facial Expressive Behaviour Analysis Tool for Continuous Affect Recognition
M. Tellamekala
S. Jaiswal
Thomas Smith
Timur Alamev
Gary McKeown
Anthony Brown
M. Valstar
CVBM
56
0
0
08 May 2025
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
46
0
0
05 May 2025
Random-Set Large Language Models
Random-Set Large Language Models
Muhammad Mubashar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
66
0
0
25 Apr 2025
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
Christopher Bülte
Yusuf Sale
Timo Löhr
Paul Hofman
Gitta Kutyniok
Eyke Hüllermeier
UD
63
0
0
25 Apr 2025
Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Alycia N. Carey
Xintao Wu
FedML
35
0
0
22 Apr 2025
Reliable Classification with Conformal Learning and Interval-Type 2 Fuzzy Sets
Reliable Classification with Conformal Learning and Interval-Type 2 Fuzzy Sets
Javier Fumanal-Idocin
Javier Andreu-Perez
25
0
0
21 Apr 2025
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Kumar Manas
Christian Schlauch
Adrian Paschke
Christian Wirth
Nadja Klein
40
0
0
17 Apr 2025
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
Yasser Benigmim
Mohammad Fahes
Tuan-Hung Vu
Andrei Bursuc
Raoul de Charette
VLM
37
0
0
14 Apr 2025
Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning
Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning
Radin Cheraghi
Amir Mohammad Mahfoozi
Sepehr Zolfaghari
Mohammadshayan Shabani
Maryam Ramezani
Hamid R. Rabiee
BDL
UQCV
CML
55
0
0
14 Apr 2025
Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
MedIm
38
0
0
10 Apr 2025
An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
Miro Miranda
Francisco Mena
A. Dengel
OOD
51
0
0
09 Apr 2025
The challenge of uncertainty quantification of large language models in medicine
The challenge of uncertainty quantification of large language models in medicine
Zahra Atf
Seyed Amir Ahmad Safavi-Naini
Peter Lewis
Aref Mahjoubfar
Nariman Naderi
Thomas Savage
Ali Soroush
21
0
0
07 Apr 2025
ATM-Net: Anatomy-Aware Text-Guided Multi-Modal Fusion for Fine-Grained Lumbar Spine Segmentation
ATM-Net: Anatomy-Aware Text-Guided Multi-Modal Fusion for Fine-Grained Lumbar Spine Segmentation
Sheng Lian
Dengfeng Pan
Jianlong Cai
Guang-Yong Chen
Zhun Zhong
Zhiming Luo
Shen Zhao
Shuo Li
36
0
0
04 Apr 2025
Decentralized Collective World Model for Emergent Communication and Coordination
Decentralized Collective World Model for Emergent Communication and Coordination
Kentaro Nomura
Tatsuya Aoki
Tadahiro Taniguchi
Takato Horii
72
0
0
04 Apr 2025
LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution
LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution
Zhuoran Yang
Jie Peng
Zhen Tan
Tianlong Chen
Yanyong Zhang
AAML
44
0
0
02 Apr 2025
Bayesian Predictive Coding
Bayesian Predictive Coding
Alexander Tschantz
Magnus T. Koudahl
Hampus Linander
Lancelot Da Costa
Conor Heins
Jeff Beck
Christopher L. Buckley
BDL
63
0
0
31 Mar 2025
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
80
0
0
30 Mar 2025
Partial Transportability for Domain Generalization
Partial Transportability for Domain Generalization
Kasra Jalaldoust
Alexis Bellot
Elias Bareinboim
OOD
77
5
0
30 Mar 2025
Robustness quantification: a new method for assessing the reliability of the predictions of a classifier
Robustness quantification: a new method for assessing the reliability of the predictions of a classifier
Adrián Detavernier
Jasper De Bock
UQCV
OOD
56
0
0
28 Mar 2025
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Samuel Bilson
Anna Pustogvar
UQCV
94
1
0
27 Mar 2025
Truthful Elicitation of Imprecise Forecasts
Truthful Elicitation of Imprecise Forecasts
Anurag Singh
Siu Lun Chau
Krikamol Muandet
65
0
0
20 Mar 2025
Disentangling Uncertainties by Learning Compressed Data Representation
Disentangling Uncertainties by Learning Compressed Data Representation
Zhiyu An
Zhibo Hou
Wan Du
UQCV
UD
71
0
0
20 Mar 2025
Uncertainty-Aware Knowledge Distillation for Compact and Efficient 6DoF Pose Estimation
Uncertainty-Aware Knowledge Distillation for Compact and Efficient 6DoF Pose Estimation
Nassim Ali Ousalah
Anis Kacem
Enjie Ghorbel
Emmanuel Koumandakis
Djamila Aouada
57
0
0
17 Mar 2025
Token-Level Uncertainty-Aware Objective for Language Model Post-Training
Token-Level Uncertainty-Aware Objective for Language Model Post-Training
Tingkai Liu
Ari S. Benjamin
Anthony M. Zador
47
0
0
15 Mar 2025
L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
J. Müller
Robert Wright
Thomas Day
Lorenzo Venturini
Samuel Budd
Hadrien Reynaud
J. Hajnal
Reza Razavi
B. Kainz
MedIm
59
0
0
13 Mar 2025
Rethinking Prompt-based Debiasing in Large Language Models
Xinyi Yang
Runzhe Zhan
Derek F. Wong
Shu Yang
Junchao Wu
Lidia S. Chao
ALM
68
1
0
12 Mar 2025
Exploring the usage of Probabilistic Neural Networks for Ionospheric electron density estimation
Miquel Garcia-Fernandez
42
0
0
08 Mar 2025
A Frank System for Co-Evolutionary Hybrid Decision-Making
Federico Mazzoni
Riccardo Guidotti
Alessio Malizia
38
2
0
08 Mar 2025
Your Model is Overconfident, and Other Lies We Tell Ourselves
Timothee Mickus
Aman Sinha
Raúl Vázquez
53
0
0
03 Mar 2025
A Guide to Failure in Machine Learning: Reliability and Robustness from Foundations to Practice
Eric Heim
Oren Wright
David Shriver
OOD
FaML
63
0
0
01 Mar 2025
Generative Uncertainty in Diffusion Models
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
49
0
0
28 Feb 2025
A Survey of Uncertainty Estimation Methods on Large Language Models
Zhiqiu Xia
Jinxuan Xu
Yuqian Zhang
Hang Liu
38
1
0
28 Feb 2025
Finer Disentanglement of Aleatoric Uncertainty Can Accelerate Chemical Histopathology Imaging
Finer Disentanglement of Aleatoric Uncertainty Can Accelerate Chemical Histopathology Imaging
Ji-Hun Oh
Kianoush Falahkheirkhah
Rohit Bhargava
57
0
0
27 Feb 2025
When does a predictor know its own loss?
When does a predictor know its own loss?
Aravind Gollakota
Parikshit Gopalan
Aayush Karan
Charlotte Peale
Udi Wieder
UQCV
FaML
67
0
0
27 Feb 2025
All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
Kacper Sokol
Eyke Hüllermeier
53
2
0
24 Feb 2025
A calibration test for evaluating set-based epistemic uncertainty representations
A calibration test for evaluating set-based epistemic uncertainty representations
Mira Jürgens
Thomas Mortier
Eyke Hüllermeier
Viktor Bengs
Willem Waegeman
39
0
0
22 Feb 2025
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Yang Xiang
Li Fan
Chenke Yin
Menglin Kong
Chengtao Ji
OffRL
42
0
0
22 Feb 2025
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
65
0
0
17 Feb 2025
Epistemic Uncertainty in Conformal Scores: A Unified Approach
Epistemic Uncertainty in Conformal Scores: A Unified Approach
Luben M. C. Cabezas
Vagner S. Santos
Thiago Rodrigo Ramos
Rafael Izbicki
50
0
0
10 Feb 2025
On the importance of structural identifiability for machine learning with partially observed dynamical systems
On the importance of structural identifiability for machine learning with partially observed dynamical systems
Janis Norden
Elisa Oostwal
Michael Chappell
Peter Tiño
K. Bunte
CML
OOD
79
0
0
06 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
87
2
0
04 Feb 2025
Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
Arthur Hoarau
Benjamin Quost
Sébastien Destercke
Willem Waegeman
UQCV
UD
PER
72
0
0
30 Jan 2025
A Unified Evaluation Framework for Epistemic Predictions
A Unified Evaluation Framework for Epistemic Predictions
Shireen Kudukkil Manchingal
Muhammad Mubashar
Kaizheng Wang
Fabio Cuzzolin
UQCV
67
2
0
28 Jan 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
59
2
0
28 Jan 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
HopCast: Calibration of Autoregressive Dynamics Models
HopCast: Calibration of Autoregressive Dynamics Models
Muhammad Bilal Shahid
Cody H. Fleming
UQCV
45
0
0
27 Jan 2025
High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
Maxime Di Folco
Gabriel Bernardino
Patrick Clarysse
Nicolas Duchateau
65
1
0
21 Jan 2025
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Matias Valdenegro-Toro
Marco Zullich
BDL
PER
UQCV
UD
199
0
0
14 Jan 2025
1234...91011
Next