ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09115
  4. Cited By
Unsupervised Out-of-Distribution Detection with Batch Normalization

Unsupervised Out-of-Distribution Detection with Batch Normalization

21 October 2019
Jiaming Song
Yang Song
Stefano Ermon
    OODD
ArXivPDFHTML

Papers citing "Unsupervised Out-of-Distribution Detection with Batch Normalization"

19 / 19 papers shown
Title
Anomalous Example Detection in Deep Learning: A Survey
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Yue Liu
P. Varshney
D. Song
AAML
122
47
0
16 Mar 2020
Detecting Out-of-Distribution Inputs to Deep Generative Models Using
  Typicality
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
47
86
0
07 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
164
720
0
07 Jun 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
163
1,475
0
11 Dec 2018
Do Deep Generative Models Know What They Don't Know?
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
53
756
0
22 Oct 2018
Anomaly Detection with Generative Adversarial Networks for Multivariate
  Time Series
Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series
Dan Li
Dacheng Chen
Jonathan Goh
See-kiong Ng
AI4TS
48
297
0
13 Sep 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
269
3,124
0
09 Jul 2018
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Stanislav Pidhorskyi
Ranya Almohsen
Donald Adjeroh
Gianfranco Doretto
UQCV
40
321
0
06 Jul 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
208
304
0
21 May 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
64
253
0
15 Mar 2018
Novelty Detection with GAN
Novelty Detection with GAN
M. Kliger
S. Fleishman
54
57
0
28 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
246
8,856
0
25 Aug 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
127
2,525
0
26 Oct 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
237
78
0
26 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
98
483
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
172
328
0
09 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
439
2,566
0
25 Jan 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
239
14,893
1
21 Dec 2013
A survey of cross-validation procedures for model selection
A survey of cross-validation procedures for model selection
Sylvain Arlot
Alain Celisse
185
3,587
0
27 Jul 2009
1