Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.08901
Cited By
Endowing Deep 3D Models with Rotation Invariance Based on Principal Component Analysis
20 October 2019
Zelin Xiao
Hongxin Lin
Renjie Li
Hongyang Chao
Shengyong Ding
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Endowing Deep 3D Models with Rotation Invariance Based on Principal Component Analysis"
10 / 10 papers shown
Title
MaskLRF: Self-supervised Pretraining via Masked Autoencoding of Local Reference Frames for Rotation-invariant 3D Point Set Analysis
Takahiko Furuya
3DPC
43
2
0
01 Mar 2024
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
20
3
0
27 Jul 2023
Cloud-RAIN: Point Cloud Analysis with Reflectional Invariance
Yiming Cui
Lecheng Ruan
Hang Dong
Qiang Li
Zhongming Wu
T. Zeng
Fengyu Fan
3DPC
35
0
0
13 May 2023
General Rotation Invariance Learning for Point Clouds via Weight-Feature Alignment
Liang Xie
Yibo Yang
Wenxiao Wang
Binbin Lin
Deng Cai
Xiaofei He
Ronghua Liang
3DPC
24
2
0
20 Feb 2023
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
Pavlo Melnyk
Andreas Robinson
M. Felsberg
Maarten Wadenback
3DPC
23
2
0
26 Nov 2022
Learning a Task-specific Descriptor for Robust Matching of 3D Point Clouds
Zhiyuan Zhang
Yuchao Dai
Bin Fan
Jiadai Sun
Mingyi He
3DPC
46
7
0
26 Oct 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Frame Averaging for Equivariant Shape Space Learning
Matan Atzmon
Koki Nagano
Sanja Fidler
S. Khamis
Y. Lipman
FedML
36
13
0
03 Dec 2021
Triangle-Net: Towards Robustness in Point Cloud Learning
Chenxi Xiao
J. Wachs
3DH
3DPC
31
34
0
27 Feb 2020
A Decomposable Attention Model for Natural Language Inference
Ankur P. Parikh
Oscar Täckström
Dipanjan Das
Jakob Uszkoreit
213
1,367
0
06 Jun 2016
1