ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08348
  4. Cited By
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
v1v2 (latest)

VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning

18 October 2019
L. Zintgraf
K. Shiarlis
Maximilian Igl
Sebastian Schulze
Y. Gal
Katja Hofmann
Shimon Whiteson
    OffRL
ArXiv (abs)PDFHTML

Papers citing "VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning"

48 / 48 papers shown
Title
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Yun Qu
Wenjie Wang
Yixiu Mao
Yiqin Lv
Xiangyang Ji
TTA
163
0
0
27 Apr 2025
Towards a Reward-Free Reinforcement Learning Framework for Vehicle Control
Towards a Reward-Free Reinforcement Learning Framework for Vehicle Control
Jielong Yang
Daoyuan Huang
99
0
0
21 Feb 2025
Toward Task Generalization via Memory Augmentation in Meta-Reinforcement Learning
Toward Task Generalization via Memory Augmentation in Meta-Reinforcement Learning
Kaixi Bao
Chenhao Li
Yarden As
Andreas Krause
Marco Hutter
OffRLCLL
235
1
0
03 Feb 2025
TEA: Trajectory Encoding Augmentation for Robust and Transferable Policies in Offline Reinforcement Learning
TEA: Trajectory Encoding Augmentation for Robust and Transferable Policies in Offline Reinforcement Learning
Batıkan Bora Ormancı
Phillip Swazinna
Steffen Udluft
Thomas Runkler
OffRL
137
0
0
28 Jan 2025
Temporal-Difference Variational Continual Learning
Temporal-Difference Variational Continual Learning
Luckeciano C. Melo
Alessandro Abate
Yarin Gal
BDLCLLVLM
135
0
0
10 Oct 2024
Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning
Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning
Subhojyoti Mukherjee
Josiah P. Hanna
Qiaomin Xie
Robert Nowak
243
2
0
07 Jun 2024
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
Lanqing Li
Hai Zhang
Xinyu Zhang
Shatong Zhu
Junqiao Zhao
Junqiao Zhao
Pheng-Ann Heng
OffRL
93
11
0
04 Feb 2024
Agent Modelling under Partial Observability for Deep Reinforcement
  Learning
Agent Modelling under Partial Observability for Deep Reinforcement Learning
Georgios Papoudakis
Filippos Christianos
Stefano V. Albrecht
89
65
0
16 Jun 2020
Meta Reinforcement Learning with Task Embedding and Shared Policy
Meta Reinforcement Learning with Task Embedding and Shared Policy
Lin Lan
Zhenguo Li
X. Guan
Peijie Wang
OffRL
121
50
0
16 May 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
120
128
0
15 May 2019
Meta-learning of Sequential Strategies
Meta-learning of Sequential Strategies
Pedro A. Ortega
Jane X. Wang
Mark Rowland
Tim Genewein
Z. Kurth-Nelson
...
Yee Whye Teh
H. V. Hasselt
Nando de Freitas
M. Botvinick
Shane Legg
OffRL
119
101
0
08 May 2019
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
  Context Variables
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
83
661
0
19 Mar 2019
No-regret Exploration in Contextual Reinforcement Learning
No-regret Exploration in Contextual Reinforcement Learning
Aditya Modi
Ambuj Tewari
OffRL
49
14
0
14 Mar 2019
Meta-Amortized Variational Inference and Learning
Meta-Amortized Variational Inference and Learning
Mike Wu
Kristy Choi
Noah D. Goodman
Stefano Ermon
OODVLMBDLDRL
84
36
0
05 Feb 2019
Efficient transfer learning and online adaptation with latent variable
  models for continuous control
Efficient transfer learning and online adaptation with latent variable models for continuous control
Christian F. Perez
F. Such
Theofanis Karaletsos
OffRL
72
14
0
08 Dec 2018
Policy Certificates: Towards Accountable Reinforcement Learning
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
143
146
0
07 Nov 2018
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
67
211
0
16 Oct 2018
Bayesian Policy Optimization for Model Uncertainty
Bayesian Policy Optimization for Model Uncertainty
Gilwoo Lee
Brian Hou
Aditya Mandalika
Jeongseok Lee
Sanjiban Choudhury
S. Srinivasa
126
41
0
01 Oct 2018
VPE: Variational Policy Embedding for Transfer Reinforcement Learning
VPE: Variational Policy Embedding for Transfer Reinforcement Learning
Isac Arnekvist
Danica Kragic
J. A. Stork
OffRL
57
37
0
10 Sep 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDLUQCVGP
99
515
0
04 Jul 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCVBDL
87
380
0
08 Jun 2018
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement
  Learning with Trajectory Embeddings
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings
John D. Co-Reyes
YuXuan Liu
Abhishek Gupta
Benjamin Eysenbach
Pieter Abbeel
Sergey Levine
SSLBDLAIFin
71
146
0
07 Jun 2018
Deep Variational Reinforcement Learning for POMDPs
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank Wood
Shimon Whiteson
BDLOffRL
71
262
0
06 Jun 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard Turner
BDL
128
265
0
24 May 2018
Variational Inference for Data-Efficient Model Learning in POMDPs
Variational Inference for Data-Efficient Model Learning in POMDPs
Sebastian Tschiatschek
Kai Arulkumaran
Jan Stühmer
Katja Hofmann
49
15
0
23 May 2018
Decoupling Dynamics and Reward for Transfer Learning
Decoupling Dynamics and Reward for Transfer Learning
Amy Zhang
Harsh Satija
Joelle Pineau
OOD
78
72
0
27 Apr 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDLOffRLAI4CE
87
142
0
20 Mar 2018
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
Some Considerations on Learning to Explore via Meta-Reinforcement Learning
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
LRM
88
116
0
03 Mar 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
115
349
0
20 Feb 2018
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
105
227
0
13 Feb 2018
A Simple Neural Attentive Meta-Learner
A Simple Neural Attentive Meta-Learner
Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
OOD
109
200
0
11 Jul 2017
Robust Imitation of Diverse Behaviors
Robust Imitation of Diverse Behaviors
Ziyun Wang
J. Merel
Scott E. Reed
Greg Wayne
Nando de Freitas
N. Heess
93
198
0
10 Jul 2017
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
Flood Sung
Li Zhang
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
OffRL
70
129
0
29 Jun 2017
Robust and Efficient Transfer Learning with Hidden-Parameter Markov
  Decision Processes
Robust and Efficient Transfer Learning with Hidden-Parameter Markov Decision Processes
Taylor W. Killian
Samuel Daulton
George Konidaris
Finale Doshi-Velez
108
106
0
20 Jun 2017
One-Shot Imitation Learning
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
86
689
0
21 Mar 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
441
2,483
0
10 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
835
11,961
0
09 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
984
0
17 Nov 2016
Reinforcement Learning with Unsupervised Auxiliary Tasks
Reinforcement Learning with Unsupervised Auxiliary Tasks
Max Jaderberg
Volodymyr Mnih
Wojciech M. Czarnecki
Tom Schaul
Joel Z Leibo
David Silver
Koray Kavukcuoglu
SSL
117
1,229
0
16 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
107
1,028
0
09 Nov 2016
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Nan Jiang
A. Krishnamurthy
Alekh Agarwal
John Langford
Robert Schapire
161
421
0
29 Oct 2016
Contextual Markov Decision Processes
Contextual Markov Decision Processes
Assaf Hallak
Dotan Di Castro
Shie Mannor
93
248
0
08 Feb 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
484
16,922
0
20 Dec 2013
Hidden Parameter Markov Decision Processes: A Semiparametric Regression
  Approach for Discovering Latent Task Parametrizations
Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations
Finale Doshi-Velez
George Konidaris
163
130
0
15 Aug 2013
(More) Efficient Reinforcement Learning via Posterior Sampling
(More) Efficient Reinforcement Learning via Posterior Sampling
Ian Osband
Daniel Russo
Benjamin Van Roy
146
535
0
04 Jun 2013
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based
  Search
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search
A. Guez
David Silver
Peter Dayan
105
174
0
14 May 2012
Variance-Based Rewards for Approximate Bayesian Reinforcement Learning
Variance-Based Rewards for Approximate Bayesian Reinforcement Learning
Jonathan Sorg
Satinder Singh
Richard L. Lewis
OffRL
112
69
0
15 Mar 2012
Learning is planning: near Bayes-optimal reinforcement learning via
  Monte-Carlo tree search
Learning is planning: near Bayes-optimal reinforcement learning via Monte-Carlo tree search
J. Asmuth
Michael L. Littman
130
42
0
14 Feb 2012
1