ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08212
  4. Cited By
Error Lower Bounds of Constant Step-size Stochastic Gradient Descent

Error Lower Bounds of Constant Step-size Stochastic Gradient Descent

18 October 2019
Zhiyan Ding
Yiding Chen
Qin Li
Xiaojin Zhu
ArXiv (abs)PDFHTML

Papers citing "Error Lower Bounds of Constant Step-size Stochastic Gradient Descent"

9 / 9 papers shown
Title
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
94
52
0
14 Jun 2020
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
84
380
0
27 Jan 2019
Tight Dimension Independent Lower Bound on the Expected Convergence Rate
  for Diminishing Step Sizes in SGD
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
LRM
47
31
0
10 Oct 2018
Lower error bounds for the stochastic gradient descent optimization
  algorithm: Sharp convergence rates for slowly and fast decaying learning
  rates
Lower error bounds for the stochastic gradient descent optimization algorithm: Sharp convergence rates for slowly and fast decaying learning rates
Arnulf Jentzen
Philippe von Wurstemberger
92
31
0
22 Mar 2018
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
Lam M. Nguyen
Phuong Ha Nguyen
Marten van Dijk
Peter Richtárik
K. Scheinberg
Martin Takáč
79
228
0
11 Feb 2018
Bridging the Gap between Constant Step Size Stochastic Gradient Descent
  and Markov Chains
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
62
156
0
20 Jul 2017
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,224
0
15 Jun 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,815
0
02 Nov 2015
Making Gradient Descent Optimal for Strongly Convex Stochastic
  Optimization
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
169
768
0
26 Sep 2011
1