Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.04460
Cited By
Still no free lunches: the price to pay for tighter PAC-Bayes bounds
10 October 2019
Benjamin Guedj
L. Pujol
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Still no free lunches: the price to pay for tighter PAC-Bayes bounds"
20 / 20 papers shown
Title
Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
Sijia Zhou
Yunwen Lei
Ata Kabán
39
0
0
03 Apr 2025
The Generalization Error of Machine Learning Algorithms
S. Perlaza
Xinying Zou
74
6
0
18 Nov 2024
A note on generalization bounds for losses with finite moments
Borja Rodríguez Gálvez
Omar Rivasplata
Ragnar Thobaben
Mikael Skoglund
44
0
0
25 Mar 2024
PAC-Bayes-Chernoff bounds for unbounded losses
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
38
6
0
02 Jan 2024
On the Validation of Gibbs Algorithms: Training Datasets, Test Datasets and their Aggregation
S. Perlaza
I. Esnaola
Gaetan Bisson
H. Vincent Poor
24
19
0
21 Jun 2023
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
48
9
0
21 Jun 2023
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
29
0
0
15 Jun 2023
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
54
70
0
21 Nov 2022
Empirical Risk Minimization with Relative Entropy Regularization
S. Perlaza
Gaetan Bisson
I. Esnaola
Alain Jean-Marie
Stefano Rini
24
20
0
12 Nov 2022
A General framework for PAC-Bayes Bounds for Meta-Learning
A. Rezazadeh
AI4CE
40
4
0
11 Jun 2022
Online PAC-Bayes Learning
Maxime Haddouche
Benjamin Guedj
29
21
0
31 May 2022
On change of measure inequalities for
f
f
f
-divergences
Antoine Picard-Weibel
Benjamin Guedj
38
13
0
11 Feb 2022
Empirical Risk Minimization with Relative Entropy Regularization: Optimality and Sensitivity Analysis
S. Perlaza
Gaetan Bisson
I. Esnaola
A. Jean-Marie
Stefano Rini
20
13
0
09 Feb 2022
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
Benjamin Guedj
M. Gleeson
Jingyu Zhang
John Shawe-Taylor
M. Bober
J. Kittler
UQCV
66
31
0
21 Sep 2021
Free Energy Minimization: A Unified Framework for Modelling, Inference, Learning,and Optimization
Sharu Theresa Jose
Osvaldo Simeone
13
9
0
25 Nov 2020
Fast-Rate Loss Bounds via Conditional Information Measures with Applications to Neural Networks
Fredrik Hellström
G. Durisi
51
2
0
22 Oct 2020
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
27
65
0
16 May 2020
Generalization Error Bounds via
m
m
m
th Central Moments of the Information Density
Fredrik Hellström
G. Durisi
8
5
0
20 Apr 2020
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
89
72
0
23 Oct 2016
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
167
455
0
03 Dec 2007
1