Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03552
Cited By
TorchBeast: A PyTorch Platform for Distributed RL
8 October 2019
Heinrich Küttler
Nantas Nardelli
Thibaut Lavril
Marco Selvatici
V. Sivakumar
Tim Rocktaschel
Edward Grefenstette
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TorchBeast: A PyTorch Platform for Distributed RL"
18 / 18 papers shown
Title
Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction
Anthony GX-Chen
Kenneth Marino
Rob Fergus
OCL
63
1
0
21 Aug 2024
Benchmarking Robustness and Generalization in Multi-Agent Systems: A Case Study on Neural MMO
Yangkun Chen
Joseph Suárez
Junjie Zhang
Chenghui Yu
Bo Wu
...
Sharada Mohanty
Jiaxin Chen
Xiu Li
Xiaolong Zhu
Phillip Isola
32
0
0
30 Aug 2023
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox
Qiyue Yin
Tongtong Yu
S. Shen
Jun Yang
Meijing Zhao
Kaiqi Huang
Bin Liang
Liangsheng Wang
OffRL
33
13
0
01 Dec 2022
Exploration via Elliptical Episodic Bonuses
Mikael Henaff
Roberta Raileanu
Minqi Jiang
Tim Rocktaschel
OffRL
35
40
0
11 Oct 2022
Lamarckian Platform: Pushing the Boundaries of Evolutionary Reinforcement Learning towards Asynchronous Commercial Games
Hui Bai
R. Shen
Yue Lin
Bo Xu
Ran Cheng
VLM
36
5
0
21 Sep 2022
Insights From the NeurIPS 2021 NetHack Challenge
Eric Hambro
Sharada Mohanty
Dmitrii Babaev
Mi-Ra Byeon
Dipam Chakraborty
...
Dan Rothermel
Mikayel Samvelyan
Dmitry Sorokin
Maciej Sypetkowski
Michal Sypetkowski
23
19
0
22 Mar 2022
The Effects of Reward Misspecification: Mapping and Mitigating Misaligned Models
Alexander Pan
Kush S. Bhatia
Jacob Steinhardt
53
172
0
10 Jan 2022
Interesting Object, Curious Agent: Learning Task-Agnostic Exploration
Simone Parisi
Victoria Dean
Deepak Pathak
Abhinav Gupta
LM&Ro
44
50
0
25 Nov 2021
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual Reinforcement Learning Agents
Sam Powers
Eliot Xing
Eric Kolve
Roozbeh Mottaghi
Abhinav Gupta
OffRL
36
38
0
19 Oct 2021
Feudal Reinforcement Learning by Reading Manuals
Kai Wang
Zhonghao Wang
Mo Yu
Humphrey Shi
OffRL
45
0
0
13 Oct 2021
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research
Mikayel Samvelyan
Robert Kirk
Vitaly Kurin
Jack Parker-Holder
Minqi Jiang
Eric Hambro
Fabio Petroni
Heinrich Küttler
Edward Grefenstette
Tim Rocktaschel
OffRL
238
89
0
27 Sep 2021
Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
33
57
0
11 Jun 2021
DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning
Daochen Zha
Jingru Xie
Wenye Ma
Sheng Zhang
Xiangru Lian
Xia Hu
Ji Liu
25
117
0
11 Jun 2021
Large Batch Simulation for Deep Reinforcement Learning
Brennan Shacklett
Erik Wijmans
Aleksei Petrenko
Manolis Savva
Dhruv Batra
V. Koltun
Kayvon Fatahalian
3DV
OffRL
AI4CE
29
26
0
12 Mar 2021
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
38
125
0
22 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
65
225
0
01 Jun 2020
MVFST-RL: An Asynchronous RL Framework for Congestion Control with Delayed Actions
V. Sivakumar
Olivier Delalleau
Tim Rocktaschel
Alexander H. Miller
Heinrich Küttler
Nantas Nardelli
Michael G. Rabbat
Joelle Pineau
Sebastian Riedel
18
36
0
09 Oct 2019
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
134
596
0
28 Feb 2017
1