ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.03336
  4. Cited By
Improving Map Re-localization with Deep 'Movable' Objects Segmentation
  on 3D LiDAR Point Clouds

Improving Map Re-localization with Deep 'Movable' Objects Segmentation on 3D LiDAR Point Clouds

8 October 2019
Victor Vaquero
Kai Fischer
Francesc Moreno-Noguer
Alberto Sanfeliu
Stefan Milz
    3DPC
ArXivPDFHTML

Papers citing "Improving Map Re-localization with Deep 'Movable' Objects Segmentation on 3D LiDAR Point Clouds"

4 / 4 papers shown
Title
DL-SLOT: Dynamic Lidar SLAM and Object Tracking Based On Graph
  Optimization
DL-SLOT: Dynamic Lidar SLAM and Object Tracking Based On Graph Optimization
Xuebo Tian
Junqiao Zhao
Chen Ye
32
2
0
23 Feb 2022
BirdNet: a 3D Object Detection Framework from LiDAR information
BirdNet: a 3D Object Detection Framework from LiDAR information
Jorge Beltrán
Carlos Guindel
Francisco Miguel Moreno
Daniel Cruzado
F. García
A. D. L. Escalera
3DPC
145
251
0
03 May 2018
SegMatch: Segment based loop-closure for 3D point clouds
SegMatch: Segment based loop-closure for 3D point clouds
Renaud Dubé
Daniel Dugas
E. Stumm
Juan I. Nieto
Roland Siegwart
Cesar Cadena
3DV
200
319
0
25 Sep 2016
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
192
521
0
21 Sep 2016
1