Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03225
Cited By
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
8 October 2019
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NGBoost: Natural Gradient Boosting for Probabilistic Prediction"
31 / 31 papers shown
Title
LabTOP: A Unified Model for Lab Test Outcome Prediction on Electronic Health Records
Sujeong Im
Jungwoo Oh
Edward Choi
BDL
LM&MA
53
0
0
20 Feb 2025
Predictive Modeling and Uncertainty Quantification of Fatigue Life in Metal Alloys using Machine Learning
Jiang Chang
Deekshith Basvoju
Aleksandar Vakanski
Indrajit Charit
Min Xian
AI4CE
39
0
0
28 Jan 2025
Analyzing Spatio-Temporal Dynamics of Dissolved Oxygen for the River Thames using Superstatistical Methods and Machine Learning
Hankun He
Takuya Boehringer
Benjamin Schäfer
Kate Heppell
Christian Beck
62
3
0
10 Jan 2025
AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Fuhang Liang
Rucong Xu
Deng Lin
OOD
45
0
0
10 Jan 2025
Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
Duy M. Nguyen
Hasan Md Tusfiqur Alam
Trung Quoc Nguyen
Devansh Srivastav
H. Profitlich
Ngan Le
Daniel Sonntag
49
2
0
07 Jan 2025
NRGBoost: Energy-Based Generative Boosted Trees
João Bravo
48
0
0
04 Oct 2024
Forecasting with Hyper-Trees
Alexander März
Kashif Rasul
46
0
0
13 May 2024
Offensive Lineup Analysis in Basketball with Clustering Players Based on Shooting Style and Offensive Role
Kazuhiro Yamada
Keisuke Fujii
19
0
0
04 Mar 2024
Simulation Based Bayesian Optimization
Roi Naveiro
Becky Tang
32
0
0
19 Jan 2024
Ensemble-based Hybrid Optimization of Bayesian Neural Networks and Traditional Machine Learning Algorithms
Peiwen Tan
BDL
29
1
0
09 Oct 2023
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
Kazuki Osawa
Satoki Ishikawa
Rio Yokota
Shigang Li
Torsten Hoefler
ODL
51
14
0
08 May 2023
Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean
Anton Thielmann
René-Marcel Kruse
Thomas Kneib
Benjamin Säfken
32
12
0
27 Jan 2023
Scalable Estimation for Structured Additive Distributional Regression
Nikolaus Umlauf
Johannes Seiler
Mattias Wetscher
T. Simon
S. Lang
Nadja Klein
21
6
0
13 Jan 2023
Nonparametric Probabilistic Regression with Coarse Learners
B. Lucena
30
0
0
28 Oct 2022
Uncertainty in Extreme Multi-label Classification
Jyun-Yu Jiang
Wei-Cheng Chang
Jiong Zhong
Cho-Jui Hsieh
Hsiang-Fu Yu
UQCV
16
0
0
18 Oct 2022
TRBoost: A Generic Gradient Boosting Machine based on Trust-region Method
Jiaqi Luo
Zihao Wei
Junkai Man
Shi-qian Xu
29
8
0
28 Sep 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
37
4
0
17 Sep 2022
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
32
28
0
17 Jun 2022
Classification of datasets with imputed missing values: does imputation quality matter?
Tolou Shadbahr
M. Roberts
Jan Stanczuk
J. Gilbey
P. Teare
...
T. Mirtti
A. Rannikko
J. Aston
Jing Tang
Carola-Bibiane Schönlieb
37
52
0
16 Jun 2022
Probabilistic Models for Manufacturing Lead Times
Recep Yusuf Bekci
Yacine Mahdid
Jinling Xing
Nikita Letov
Ying Zhang
Zahid Pasha
27
0
0
28 Apr 2022
Look back, look around: a systematic analysis of effective predictors for new outlinks in focused Web crawling
Thi Kim Nhung Dang
Doina Bucur
Berk Atil
Guillaume Pitel
Frank Ruis
H. Kadkhodaei
Exensa
24
6
0
09 Nov 2021
Generalized XGBoost Method
Yang Guang
14
4
0
15 Sep 2021
An Interpretable Probabilistic Model for Short-Term Solar Power Forecasting Using Natural Gradient Boosting
Georgios Mitrentsis
H. Lens
14
106
0
05 Aug 2021
GBHT: Gradient Boosting Histogram Transform for Density Estimation
Jingyi Cui
H. Hang
Yisen Wang
Zhouchen Lin
30
9
0
10 Jun 2021
Multivariate Probabilistic Regression with Natural Gradient Boosting
Michael O’Malley
A. Sykulski
R. Lumpkin
Alejandro Schuler
BDL
30
7
0
07 Jun 2021
How Powerful are Performance Predictors in Neural Architecture Search?
Colin White
Arber Zela
Binxin Ru
Yang Liu
Frank Hutter
22
126
0
02 Apr 2021
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models
E. Zelikman
Sharon Zhou
Jeremy Irvin
Cooper D. Raterink
Hao Sheng
Anand Avati
Jack Kelly
Ram Rajagopal
A. Ng
D. Gagne
23
12
0
09 Oct 2020
Kaggle forecasting competitions: An overlooked learning opportunity
Casper Solheim Bojer
Jens Peder Meldgaard
AI4TS
21
206
0
16 Sep 2020
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
28
94
0
18 Jun 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1