ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.05456
21
1

Ensemble-based Hybrid Optimization of Bayesian Neural Networks and Traditional Machine Learning Algorithms

9 October 2023
Peiwen Tan
    BDL
ArXivPDFHTML
Abstract

This research introduces a novel methodology for optimizing Bayesian Neural Networks (BNNs) by synergistically integrating them with traditional machine learning algorithms such as Random Forests (RF), Gradient Boosting (GB), and Support Vector Machines (SVM). Feature integration solidifies these results by emphasizing the second-order conditions for optimality, including stationarity and positive definiteness of the Hessian matrix. Conversely, hyperparameter tuning indicates a subdued impact in improving Expected Improvement (EI), represented by EI(x). Overall, the ensemble method stands out as a robust, algorithmically optimized approach.

View on arXiv
Comments on this paper