Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.00659
Cited By
v1
v2 (latest)
Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers
1 October 2019
Aaron Griffith
Andrew Pomerance
D. Gauthier
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers"
40 / 40 papers shown
Title
Federated Koopman-Reservoir Learning for Large-Scale Multivariate Time-Series Anomaly Detection
Long Tan Le
Tung Nguyen
Han Shu
Suranga Seneviratne
Choong Seon Hong
Nguyen Tran
105
0
0
14 Mar 2025
Reconstructing dynamics from sparse observations with no training on target system
Zheng-Meng Zhai
Jun-Yin Huang
Benjamin D. Stern
Y. Lai
78
1
0
28 Oct 2024
Learning to learn ecosystems from limited data -- a meta-learning approach
Zheng-Meng Zhai
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
73
1
0
02 Oct 2024
Data-driven model discovery with Kolmogorov-Arnold networks
Mohammadamin Moradi
Shirin Panahi
Erik M. Bollt
Ying-Cheng Lai
61
3
0
23 Sep 2024
Predicting Chaotic System Behavior using Machine Learning Techniques
Huaiyuan Rao
Yichen Zhao
Qiang Lai
91
0
0
11 Aug 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
180
7
0
30 Jun 2024
Stochastic parameter reduced-order model based on hybrid machine learning approaches
Cheng Fang
Jinqiao Duan
71
0
0
24 Mar 2024
Hybridizing Traditional and Next-Generation Reservoir Computing to Accurately and Efficiently Forecast Dynamical Systems
Ravi Chepuri
Dael Amzalag
Thomas Antonsen
M. Girvan
73
10
0
04 Mar 2024
Chaotic attractor reconstruction using small reservoirs -- the influence of topology
Lina Jaurigue
AI4TS
53
9
0
23 Feb 2024
Machine-learning parameter tracking with partial state observation
Zheng-Meng Zhai
Mohammadamin Moradi
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
69
7
0
15 Nov 2023
Digital twins of nonlinear dynamical systems: A perspective
Ying-Cheng Lai
AI4CE
36
4
0
20 Sep 2023
Reservoir Computing with Error Correction: Long-term Behaviors of Stochastic Dynamical Systems
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
77
4
0
01 May 2023
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence
T. A. Smith
S. Penny
Jason A. Platt
Tse-Chun Chen
62
5
0
28 Apr 2023
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
89
5
0
24 Apr 2023
Learning unidirectional coupling using echo-state network
S. Mandal
M. Shrimali
80
7
0
23 Mar 2023
Embedding Theory of Reservoir Computing and Reducing Reservoir Network Using Time Delays
Xing-Yue Duan
Xiong Ying
Siyang Leng
Jürgen Kurths
Wei Lin
Huanfei Ma
67
23
0
16 Mar 2023
Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing
Kohei Tsuchiyama
André Röhm
Takatomo Mihana
R. Horisaki
Makoto Naruse
47
6
0
27 Jan 2023
Emergence of a stochastic resonance in machine learning
Zheng-Meng Zhai
Ling-Wei Kong
Y. Lai
58
3
0
15 Nov 2022
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
104
13
0
18 Oct 2022
Digital twins of nonlinear dynamical systems
Ling-Wei Kong
Yang Weng
Bryan Glaz
Mulugeta Haile
Y. Lai
35
2
0
05 Oct 2022
Using Machine Learning to Anticipate Tipping Points and Extrapolate to Post-Tipping Dynamics of Non-Stationary Dynamical Systems
Dhruvit Patel
Edward Ott
76
40
0
01 Jul 2022
Dimensional criterion for forecasting nonlinear systems by reservoir computing
Pauliina Karkkainen
R. Linna
112
1
0
09 Feb 2022
A Systematic Exploration of Reservoir Computing for Forecasting Complex Spatiotemporal Dynamics
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
96
41
0
21 Jan 2022
`Next Generation' Reservoir Computing: an Empirical Data-Driven Expression of Dynamical Equations in Time-Stepping Form
Tse-Chun Chen
S. Penny
T. A. Smith
Jason A. Platt
87
1
0
13 Jan 2022
Integrating Recurrent Neural Networks with Data Assimilation for Scalable Data-Driven State Estimation
S. Penny
T. A. Smith
Tse-Chun Chen
Jason A. Platt
Hsin-Yi Lin
M. Goodliff
H. Abarbanel
AI4CE
95
43
0
25 Sep 2021
Next Generation Reservoir Computing
D. Gauthier
Erik Bollt
Aaron Griffith
W. A. S. Barbosa
119
418
0
14 Jun 2021
Learning Hamiltonian dynamics by reservoir computer
Han Zhang
Huawei Fan
Liang Wang
Xingang Wang
25
3
0
24 Apr 2021
Deep Chaos Synchronization
M. Mobini
Georges Kaddoum
55
8
0
17 Apr 2021
Anticipating synchronization with machine learning
Huawei Fan
Ling-Wei Kong
Y. Lai
Xingang Wang
61
55
0
13 Mar 2021
Cluster-based Input Weight Initialization for Echo State Networks
Peter Steiner
A. Jalalvand
P. Birkholz
55
14
0
08 Mar 2021
Reservoir Computing with Superconducting Electronics
G. Rowlands
M. Nguyen
G. Ribeill
A. Wagner
L. Govia
W. A. S. Barbosa
D. Gauthier
T. Ohki
26
9
0
03 Mar 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
87
26
0
25 Feb 2021
Controlling nonlinear dynamical systems into arbitrary states using machine learning
Alexander Haluszczynski
Christoph Räth
AI4CE
93
14
0
23 Feb 2021
Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics
A. Racca
Luca Magri
OOD
AAML
55
65
0
09 Feb 2021
Symmetry-Aware Reservoir Computing
W. A. S. Barbosa
Aaron Griffith
G. Rowlands
L. Govia
G. Ribeill
M. Nguyen
T. Ohki
D. Gauthier
56
12
0
30 Jan 2021
Machine learning prediction of critical transition and system collapse
Ling-Wei Kong
Hua-wei Fan
C. Grebogi
Y. Lai
67
85
0
02 Dec 2020
Transfer learning of chaotic systems
Yali Guo
Han Zhang
Liang Wang
Huawei Fan
Xingang Wang
AI4TS
42
17
0
15 Nov 2020
Model-Free Control of Dynamical Systems with Deep Reservoir Computing
D. Canaday
Andrew Pomerance
D. Gauthier
56
33
0
05 Oct 2020
Breaking Symmetries of the Reservoir Equations in Echo State Networks
Joschka Herteux
Christoph Räth
23
1
0
21 Sep 2020
Bayesian optimisation of large-scale photonic reservoir computers
P. Antonik
N. Marsal
Daniel Brunner
D. Rontani
125
22
0
06 Apr 2020
1