ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00659
  4. Cited By
Forecasting Chaotic Systems with Very Low Connectivity Reservoir
  Computers
v1v2 (latest)

Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers

1 October 2019
Aaron Griffith
Andrew Pomerance
D. Gauthier
ArXiv (abs)PDFHTML

Papers citing "Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers"

40 / 40 papers shown
Title
Federated Koopman-Reservoir Learning for Large-Scale Multivariate Time-Series Anomaly Detection
Long Tan Le
Tung Nguyen
Han Shu
Suranga Seneviratne
Choong Seon Hong
Nguyen Tran
105
0
0
14 Mar 2025
Reconstructing dynamics from sparse observations with no training on
  target system
Reconstructing dynamics from sparse observations with no training on target system
Zheng-Meng Zhai
Jun-Yin Huang
Benjamin D. Stern
Y. Lai
78
1
0
28 Oct 2024
Learning to learn ecosystems from limited data -- a meta-learning
  approach
Learning to learn ecosystems from limited data -- a meta-learning approach
Zheng-Meng Zhai
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
73
1
0
02 Oct 2024
Data-driven model discovery with Kolmogorov-Arnold networks
Data-driven model discovery with Kolmogorov-Arnold networks
Mohammadamin Moradi
Shirin Panahi
Erik M. Bollt
Ying-Cheng Lai
61
3
0
23 Sep 2024
Predicting Chaotic System Behavior using Machine Learning Techniques
Predicting Chaotic System Behavior using Machine Learning Techniques
Huaiyuan Rao
Yichen Zhao
Qiang Lai
91
0
0
11 Aug 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
180
7
0
30 Jun 2024
Stochastic parameter reduced-order model based on hybrid machine
  learning approaches
Stochastic parameter reduced-order model based on hybrid machine learning approaches
Cheng Fang
Jinqiao Duan
71
0
0
24 Mar 2024
Hybridizing Traditional and Next-Generation Reservoir Computing to
  Accurately and Efficiently Forecast Dynamical Systems
Hybridizing Traditional and Next-Generation Reservoir Computing to Accurately and Efficiently Forecast Dynamical Systems
Ravi Chepuri
Dael Amzalag
Thomas Antonsen
M. Girvan
73
10
0
04 Mar 2024
Chaotic attractor reconstruction using small reservoirs -- the influence
  of topology
Chaotic attractor reconstruction using small reservoirs -- the influence of topology
Lina Jaurigue
AI4TS
53
9
0
23 Feb 2024
Machine-learning parameter tracking with partial state observation
Machine-learning parameter tracking with partial state observation
Zheng-Meng Zhai
Mohammadamin Moradi
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
69
7
0
15 Nov 2023
Digital twins of nonlinear dynamical systems: A perspective
Digital twins of nonlinear dynamical systems: A perspective
Ying-Cheng Lai
AI4CE
36
4
0
20 Sep 2023
Reservoir Computing with Error Correction: Long-term Behaviors of
  Stochastic Dynamical Systems
Reservoir Computing with Error Correction: Long-term Behaviors of Stochastic Dynamical Systems
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
77
4
0
01 May 2023
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
  Network Emulators of Geophysical Turbulence
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence
T. A. Smith
S. Penny
Jason A. Platt
Tse-Chun Chen
62
5
0
28 Apr 2023
Constraining Chaos: Enforcing dynamical invariants in the training of
  recurrent neural networks
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
89
5
0
24 Apr 2023
Learning unidirectional coupling using echo-state network
Learning unidirectional coupling using echo-state network
S. Mandal
M. Shrimali
80
7
0
23 Mar 2023
Embedding Theory of Reservoir Computing and Reducing Reservoir Network
  Using Time Delays
Embedding Theory of Reservoir Computing and Reducing Reservoir Network Using Time Delays
Xing-Yue Duan
Xiong Ying
Siyang Leng
Jürgen Kurths
Wei Lin
Huanfei Ma
67
23
0
16 Mar 2023
Effect of temporal resolution on the reproduction of chaotic dynamics
  via reservoir computing
Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing
Kohei Tsuchiyama
André Röhm
Takatomo Mihana
R. Horisaki
Makoto Naruse
47
6
0
27 Jan 2023
Emergence of a stochastic resonance in machine learning
Emergence of a stochastic resonance in machine learning
Zheng-Meng Zhai
Ling-Wei Kong
Y. Lai
58
3
0
15 Nov 2022
Catch-22s of reservoir computing
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
104
13
0
18 Oct 2022
Digital twins of nonlinear dynamical systems
Digital twins of nonlinear dynamical systems
Ling-Wei Kong
Yang Weng
Bryan Glaz
Mulugeta Haile
Y. Lai
35
2
0
05 Oct 2022
Using Machine Learning to Anticipate Tipping Points and Extrapolate to
  Post-Tipping Dynamics of Non-Stationary Dynamical Systems
Using Machine Learning to Anticipate Tipping Points and Extrapolate to Post-Tipping Dynamics of Non-Stationary Dynamical Systems
Dhruvit Patel
Edward Ott
76
40
0
01 Jul 2022
Dimensional criterion for forecasting nonlinear systems by reservoir
  computing
Dimensional criterion for forecasting nonlinear systems by reservoir computing
Pauliina Karkkainen
R. Linna
112
1
0
09 Feb 2022
A Systematic Exploration of Reservoir Computing for Forecasting Complex
  Spatiotemporal Dynamics
A Systematic Exploration of Reservoir Computing for Forecasting Complex Spatiotemporal Dynamics
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
96
41
0
21 Jan 2022
`Next Generation' Reservoir Computing: an Empirical Data-Driven
  Expression of Dynamical Equations in Time-Stepping Form
`Next Generation' Reservoir Computing: an Empirical Data-Driven Expression of Dynamical Equations in Time-Stepping Form
Tse-Chun Chen
S. Penny
T. A. Smith
Jason A. Platt
87
1
0
13 Jan 2022
Integrating Recurrent Neural Networks with Data Assimilation for
  Scalable Data-Driven State Estimation
Integrating Recurrent Neural Networks with Data Assimilation for Scalable Data-Driven State Estimation
S. Penny
T. A. Smith
Tse-Chun Chen
Jason A. Platt
Hsin-Yi Lin
M. Goodliff
H. Abarbanel
AI4CE
95
43
0
25 Sep 2021
Next Generation Reservoir Computing
Next Generation Reservoir Computing
D. Gauthier
Erik Bollt
Aaron Griffith
W. A. S. Barbosa
119
418
0
14 Jun 2021
Learning Hamiltonian dynamics by reservoir computer
Learning Hamiltonian dynamics by reservoir computer
Han Zhang
Huawei Fan
Liang Wang
Xingang Wang
25
3
0
24 Apr 2021
Deep Chaos Synchronization
Deep Chaos Synchronization
M. Mobini
Georges Kaddoum
55
8
0
17 Apr 2021
Anticipating synchronization with machine learning
Anticipating synchronization with machine learning
Huawei Fan
Ling-Wei Kong
Y. Lai
Xingang Wang
61
55
0
13 Mar 2021
Cluster-based Input Weight Initialization for Echo State Networks
Cluster-based Input Weight Initialization for Echo State Networks
Peter Steiner
A. Jalalvand
P. Birkholz
55
14
0
08 Mar 2021
Reservoir Computing with Superconducting Electronics
Reservoir Computing with Superconducting Electronics
G. Rowlands
M. Nguyen
G. Ribeill
A. Wagner
L. Govia
W. A. S. Barbosa
D. Gauthier
T. Ohki
26
9
0
03 Mar 2021
Adaptable Hamiltonian neural networks
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
87
26
0
25 Feb 2021
Controlling nonlinear dynamical systems into arbitrary states using
  machine learning
Controlling nonlinear dynamical systems into arbitrary states using machine learning
Alexander Haluszczynski
Christoph Räth
AI4CE
93
14
0
23 Feb 2021
Robust Optimization and Validation of Echo State Networks for learning
  chaotic dynamics
Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics
A. Racca
Luca Magri
OODAAML
55
65
0
09 Feb 2021
Symmetry-Aware Reservoir Computing
Symmetry-Aware Reservoir Computing
W. A. S. Barbosa
Aaron Griffith
G. Rowlands
L. Govia
G. Ribeill
M. Nguyen
T. Ohki
D. Gauthier
56
12
0
30 Jan 2021
Machine learning prediction of critical transition and system collapse
Machine learning prediction of critical transition and system collapse
Ling-Wei Kong
Hua-wei Fan
C. Grebogi
Y. Lai
67
85
0
02 Dec 2020
Transfer learning of chaotic systems
Transfer learning of chaotic systems
Yali Guo
Han Zhang
Liang Wang
Huawei Fan
Xingang Wang
AI4TS
42
17
0
15 Nov 2020
Model-Free Control of Dynamical Systems with Deep Reservoir Computing
Model-Free Control of Dynamical Systems with Deep Reservoir Computing
D. Canaday
Andrew Pomerance
D. Gauthier
56
33
0
05 Oct 2020
Breaking Symmetries of the Reservoir Equations in Echo State Networks
Breaking Symmetries of the Reservoir Equations in Echo State Networks
Joschka Herteux
Christoph Räth
23
1
0
21 Sep 2020
Bayesian optimisation of large-scale photonic reservoir computers
Bayesian optimisation of large-scale photonic reservoir computers
P. Antonik
N. Marsal
Daniel Brunner
D. Rontani
125
22
0
06 Apr 2020
1