ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.05702
24
0

Predicting Chaotic System Behavior using Machine Learning Techniques

11 August 2024
Huaiyuan Rao
Yichen Zhao
Qiang Lai
ArXivPDFHTML
Abstract

Recently, machine learning techniques, particularly deep learning, have demonstrated superior performance over traditional time series forecasting methods across various applications, including both single-variable and multi-variable predictions. This study aims to investigate the capability of i) Next Generation Reservoir Computing (NG-RC) ii) Reservoir Computing (RC) iii) Long short-term Memory (LSTM) for predicting chaotic system behavior, and to compare their performance in terms of accuracy, efficiency, and robustness. These methods are applied to predict time series obtained from four representative chaotic systems including Lorenz, R\"ossler, Chen, Qi systems. In conclusion, we found that NG-RC is more computationally efficient and offers greater potential for predicting chaotic system behavior.

View on arXiv
Comments on this paper