ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00204
  4. Cited By
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap: Large-scale Dimensionality Reduction Using Triplets

1 October 2019
Ehsan Amid
Manfred K. Warmuth
ArXivPDFHTML

Papers citing "TriMap: Large-scale Dimensionality Reduction Using Triplets"

44 / 44 papers shown
Title
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
Zihao Chen
Wenyong Wang
Jiachen Yang
Yu Xiang
34
0
0
07 May 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
241
0
0
12 Mar 2025
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Jacob Gildenblat
Jens Pahnke
211
1
0
10 Mar 2025
Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Mattéo Clémot
Julie Digne
Julien Tierny
227
0
0
27 Feb 2025
Navigating the Effect of Parametrization for Dimensionality Reduction
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
81
1
0
24 Nov 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via
  Nonparametric Estimation
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
206
0
0
22 Oct 2024
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer
  Learning
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
Isaac Ray
Alexei Skurikhin
124
0
0
05 Sep 2024
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample
  Extensions
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions
Luca Reichmann
David Hägele
Daniel Weiskopf
201
0
0
07 Aug 2024
Outlier Detection in Large Radiological Datasets using UMAP
Outlier Detection in Large Radiological Datasets using UMAP
Mohammad Tariqul Islam
Jason W. Fleischer
56
1
0
31 Jul 2024
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
Shay Deutsch
Lionel Yelibi
Alex Tong Lin
Arjun Ravi Kannan
56
1
0
04 Jun 2024
CBMAP: Clustering-based manifold approximation and projection for
  dimensionality reduction
CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction
Berat Dogan
38
0
0
27 Apr 2024
Curvature Augmented Manifold Embedding and Learning
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
123
2
0
21 Mar 2024
Scalable manifold learning by uniform landmark sampling and constrained
  locally linear embedding
Scalable manifold learning by uniform landmark sampling and constrained locally linear embedding
D. Peng
Zhipeng Gui
Wenzhang Wei
Huayi Wu
40
1
0
02 Jan 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks
  using Local Neighborhood Analysis
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
32
1
0
07 Dec 2023
Calibrating dimension reduction hyperparameters in the presence of noise
Calibrating dimension reduction hyperparameters in the presence of noise
Justin Lin
Julia Fukuyama
34
1
0
05 Dec 2023
A ripple in time: a discontinuity in American history
A ripple in time: a discontinuity in American history
Alexander Kolpakov
Igor Rivin
AI4TS
11
0
0
02 Dec 2023
Efficiently Visualizing Large Graphs
Efficiently Visualizing Large Graphs
Xinyu Li
Yao Xiao
Yuchen Zhou
16
0
0
17 Oct 2023
Cluster Exploration using Informative Manifold Projections
Cluster Exploration using Informative Manifold Projections
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
19
0
0
26 Sep 2023
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Yi Zhang
SSL
19
0
0
15 Sep 2023
GroupEnc: encoder with group loss for global structure preservation
GroupEnc: encoder with group loss for global structure preservation
David Novak
S. V. Gassen
Yvan Saeys
DRL
14
1
0
06 Sep 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
32
4
0
20 Jun 2023
Collection Space Navigator: An Interactive Visualization Interface for
  Multidimensional Datasets
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
27
6
0
11 May 2023
Force-Directed Graph Layouts Revisited: A New Force Based on the
  T-Distribution
Force-Directed Graph Layouts Revisited: A New Force Based on the T-Distribution
Fahai Zhong
Mingliang Xue
Jian Zhang
Fan Zhang
Rui Ban
Oliver Deussen
Yunhai Wang
18
8
0
05 Mar 2023
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for Images
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for Images
Konstantin Kobs
M. Steininger
Andreas Hotho
VLM
18
3
0
23 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold
  Approximation and Projection
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
34
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
Layerwise Bregman Representation Learning with Applications to Knowledge
  Distillation
Layerwise Bregman Representation Learning with Applications to Knowledge Distillation
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
28
2
0
15 Sep 2022
From $t$-SNE to UMAP with contrastive learning
From ttt-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
48
21
0
03 Jun 2022
Hierarchical Nearest Neighbor Graph Embedding for Efficient
  Dimensionality Reduction
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction
M. Sarfraz
Marios Koulakis
C. Seibold
Rainer Stiefelhagen
23
19
0
24 Mar 2022
Learning from Randomly Initialized Neural Network Features
Learning from Randomly Initialized Neural Network Features
Ehsan Amid
Rohan Anil
W. Kotłowski
Manfred K. Warmuth
MLT
27
14
0
13 Feb 2022
Scalable semi-supervised dimensionality reduction with GPU-accelerated
  EmbedSOM
Scalable semi-supervised dimensionality reduction with GPU-accelerated EmbedSOM
Adam Šmelko
Sona Molnárová
Miroslav Kratochvíl
A. Koladiya
J. Musil
Martin Kruliš
J. Vondrášek
21
0
0
03 Jan 2022
TLDR: Twin Learning for Dimensionality Reduction
TLDR: Twin Learning for Dimensionality Reduction
Yannis Kalantidis
Carlos Lassance
Jon Almazán
Diane Larlus
SSL
27
10
0
18 Oct 2021
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for
  Practical Measures
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical Measures
Y. Bartal
Ora Nova Fandina
Kasper Green Larsen
13
0
0
14 Jul 2021
An Analytical Survey on Recent Trends in High Dimensional Data
  Visualization
An Analytical Survey on Recent Trends in High Dimensional Data Visualization
Alex B. Kiefer
Md. Khaledur Rahman
AI4TS
14
2
0
05 Jul 2021
WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise
  Labels
WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise Labels
I. Karmanov
F. G. Zanjani
S. Merlin
I. Kadampot
Daniel Dijkman
27
14
0
31 May 2021
On UMAP's true loss function
On UMAP's true loss function
Sebastian Damrich
Fred Hamprecht
29
39
0
26 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Where is your place, Visual Place Recognition?
Where is your place, Visual Place Recognition?
Sourav Garg
Tobias Fischer
Michael Milford
39
113
0
11 Mar 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
174
305
0
08 Dec 2020
Parametric UMAP embeddings for representation and semi-supervised
  learning
Parametric UMAP embeddings for representation and semi-supervised learning
Tim Sainburg
Leland McInnes
T. Gentner
31
217
0
27 Sep 2020
Bio-inspired Structure Identification in Language Embeddings
Bio-inspired Structure Identification in Language Embeddings
Hongwei Zhou
Zhou
Oskar Elek
P. Anand
A. Forbes
11
1
0
05 Sep 2020
Attraction-Repulsion Spectrum in Neighbor Embeddings
Attraction-Repulsion Spectrum in Neighbor Embeddings
Jan Niklas Böhm
Philipp Berens
D. Kobak
34
53
0
17 Jul 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
59
475
0
18 Mar 2020
Self Organizing Nebulous Growths for Robust and Incremental Data
  Visualization
Self Organizing Nebulous Growths for Robust and Incremental Data Visualization
Damith A. Senanayake
Wei Wang
S. Naik
Saman K. Halgamuge
AI4TS
13
16
0
09 Dec 2019
1