Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.00204
Cited By
TriMap: Large-scale Dimensionality Reduction Using Triplets
1 October 2019
Ehsan Amid
Manfred K. Warmuth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TriMap: Large-scale Dimensionality Reduction Using Triplets"
44 / 44 papers shown
Title
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
Zihao Chen
Wenyong Wang
Jiachen Yang
Yu Xiang
34
0
0
07 May 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
241
0
0
12 Mar 2025
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Jacob Gildenblat
Jens Pahnke
211
1
0
10 Mar 2025
Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Mattéo Clémot
Julie Digne
Julien Tierny
227
0
0
27 Feb 2025
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
81
1
0
24 Nov 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
206
0
0
22 Oct 2024
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
Isaac Ray
Alexei Skurikhin
124
0
0
05 Sep 2024
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions
Luca Reichmann
David Hägele
Daniel Weiskopf
201
0
0
07 Aug 2024
Outlier Detection in Large Radiological Datasets using UMAP
Mohammad Tariqul Islam
Jason W. Fleischer
56
1
0
31 Jul 2024
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
Shay Deutsch
Lionel Yelibi
Alex Tong Lin
Arjun Ravi Kannan
56
1
0
04 Jun 2024
CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction
Berat Dogan
38
0
0
27 Apr 2024
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
123
2
0
21 Mar 2024
Scalable manifold learning by uniform landmark sampling and constrained locally linear embedding
D. Peng
Zhipeng Gui
Wenzhang Wei
Huayi Wu
40
1
0
02 Jan 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
32
1
0
07 Dec 2023
Calibrating dimension reduction hyperparameters in the presence of noise
Justin Lin
Julia Fukuyama
34
1
0
05 Dec 2023
A ripple in time: a discontinuity in American history
Alexander Kolpakov
Igor Rivin
AI4TS
11
0
0
02 Dec 2023
Efficiently Visualizing Large Graphs
Xinyu Li
Yao Xiao
Yuchen Zhou
16
0
0
17 Oct 2023
Cluster Exploration using Informative Manifold Projections
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
19
0
0
26 Sep 2023
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Yi Zhang
SSL
19
0
0
15 Sep 2023
GroupEnc: encoder with group loss for global structure preservation
David Novak
S. V. Gassen
Yvan Saeys
DRL
14
1
0
06 Sep 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
32
4
0
20 Jun 2023
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
27
6
0
11 May 2023
Force-Directed Graph Layouts Revisited: A New Force Based on the T-Distribution
Fahai Zhong
Mingliang Xue
Jian Zhang
Fan Zhang
Rui Ban
Oliver Deussen
Yunhai Wang
18
8
0
05 Mar 2023
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for Images
Konstantin Kobs
M. Steininger
Andreas Hotho
VLM
18
3
0
23 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
34
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
Layerwise Bregman Representation Learning with Applications to Knowledge Distillation
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
28
2
0
15 Sep 2022
From
t
t
t
-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
48
21
0
03 Jun 2022
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction
M. Sarfraz
Marios Koulakis
C. Seibold
Rainer Stiefelhagen
23
19
0
24 Mar 2022
Learning from Randomly Initialized Neural Network Features
Ehsan Amid
Rohan Anil
W. Kotłowski
Manfred K. Warmuth
MLT
27
14
0
13 Feb 2022
Scalable semi-supervised dimensionality reduction with GPU-accelerated EmbedSOM
Adam Šmelko
Sona Molnárová
Miroslav Kratochvíl
A. Koladiya
J. Musil
Martin Kruliš
J. Vondrášek
21
0
0
03 Jan 2022
TLDR: Twin Learning for Dimensionality Reduction
Yannis Kalantidis
Carlos Lassance
Jon Almazán
Diane Larlus
SSL
27
10
0
18 Oct 2021
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical Measures
Y. Bartal
Ora Nova Fandina
Kasper Green Larsen
13
0
0
14 Jul 2021
An Analytical Survey on Recent Trends in High Dimensional Data Visualization
Alex B. Kiefer
Md. Khaledur Rahman
AI4TS
14
2
0
05 Jul 2021
WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise Labels
I. Karmanov
F. G. Zanjani
S. Merlin
I. Kadampot
Daniel Dijkman
27
14
0
31 May 2021
On UMAP's true loss function
Sebastian Damrich
Fred Hamprecht
29
39
0
26 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Where is your place, Visual Place Recognition?
Sourav Garg
Tobias Fischer
Michael Milford
39
113
0
11 Mar 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
174
305
0
08 Dec 2020
Parametric UMAP embeddings for representation and semi-supervised learning
Tim Sainburg
Leland McInnes
T. Gentner
31
217
0
27 Sep 2020
Bio-inspired Structure Identification in Language Embeddings
Hongwei Zhou
Zhou
Oskar Elek
P. Anand
A. Forbes
11
1
0
05 Sep 2020
Attraction-Repulsion Spectrum in Neighbor Embeddings
Jan Niklas Böhm
Philipp Berens
D. Kobak
34
53
0
17 Jul 2020
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
59
475
0
18 Mar 2020
Self Organizing Nebulous Growths for Robust and Incremental Data Visualization
Damith A. Senanayake
Wei Wang
S. Naik
Saman K. Halgamuge
AI4TS
13
16
0
09 Dec 2019
1