ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00024
  4. Cited By
Neural Canonical Transformation with Symplectic Flows

Neural Canonical Transformation with Symplectic Flows

30 September 2019
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
    DRL
ArXivPDFHTML

Papers citing "Neural Canonical Transformation with Symplectic Flows"

9 / 9 papers shown
Title
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
23
39
0
10 Feb 2022
Machine Learning in Nuclear Physics
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
37
41
0
04 Dec 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
37
168
0
19 May 2021
Sampling using $SU(N)$ gauge equivariant flows
Sampling using SU(N)SU(N)SU(N) gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
25
127
0
12 Aug 2020
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
106
49
0
27 Feb 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
220
0
29 Sep 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
285
10,354
0
12 Dec 2018
Spectral Inference Networks: Unifying Deep and Spectral Learning
Spectral Inference Networks: Unifying Deep and Spectral Learning
David Pfau
Stig Petersen
Ashish Agarwal
David Barrett
Kimberly L. Stachenfeld
51
40
0
06 Jun 2018
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1