Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.13739
Cited By
Equivariant Hamiltonian Flows
30 September 2019
Danilo Jimenez Rezende
S. Racanière
I. Higgins
Peter Toth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equivariant Hamiltonian Flows"
21 / 21 papers shown
Title
Hamiltonian Normalizing Flows as kinetic PDE solvers: application to the 1D Vlasov-Poisson Equations
Vincent Souveton
Sébastien Terrana
41
0
0
07 May 2025
Transferable Boltzmann Generators
Leon Klein
Frank Noé
56
13
0
20 Jun 2024
Neural Approximate Mirror Maps for Constrained Diffusion Models
Berthy Feng
Ricardo Baptista
Katherine Bouman
MedIm
DiffM
53
3
0
18 Jun 2024
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
23
3
0
03 Feb 2023
Sample Complexity of Probability Divergences under Group Symmetry
Ziyu Chen
Markos A. Katsoulakis
Luc Rey-Bellet
Weixia Zhu
46
10
0
03 Feb 2023
Grassmann Manifold Flows for Stable Shape Generation
Ryoma Yataka
Kazuki Hirashima
Masashi Shiraishi
27
1
0
05 Nov 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
44
85
0
18 Oct 2022
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
40
2
0
17 Oct 2022
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
39
44
0
17 Mar 2022
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking
O. Ganea
Xinyuan Huang
Charlotte Bunne
Yatao Bian
Regina Barzilay
Tommi Jaakkola
Andreas Krause
36
152
0
15 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
50
8
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
40
28
0
09 Nov 2021
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
25
22
0
18 Jun 2021
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
39
170
0
19 May 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
44
7
0
08 Mar 2021
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
35
981
0
19 Feb 2021
Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach
P. Koutsourelakis
DiffM
AI4CE
16
15
0
14 Jan 2021
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
43
25
0
23 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
21
21
0
11 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
1