Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.13334
Cited By
Symplectic Recurrent Neural Networks
29 September 2019
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Symplectic Recurrent Neural Networks"
50 / 54 papers shown
Title
Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery
Yana Lishkova
P. Scherer
Steffen Ridderbusch
M. Jamnik
Pietro Lio'
Sina Ober-Blobaum
Christian Offen
PINN
63
7
0
28 Jan 2025
Efficiently Parameterized Neural Metriplectic Systems
Anthony Gruber
Kookjin Lee
Haksoo Lim
Noseong Park
Nathaniel Trask
58
1
0
28 Jan 2025
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
36
0
0
23 Jan 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
23
10
0
17 Jan 2024
Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach
Kai Zhao
Qiyu Kang
Yang Song
Rui She
Sijie Wang
Wee Peng Tay
AAML
35
22
0
10 Oct 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
29
1
0
06 Sep 2023
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
25
1
0
22 Aug 2023
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
27
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
28
5
0
24 Apr 2023
Learning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methods
Haakon Noren
19
3
0
07 Mar 2023
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
35
0
0
02 Mar 2023
Learning PDE Solution Operator for Continuous Modeling of Time-Series
Yesom Park
Jaemoo Choi
Changyeon Yoon
Changhoon Song
Myung-joo Kang
AI4TS
AI4CE
18
3
0
02 Feb 2023
AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions
F. Bonnet
Jocelyn Ahmed Mazari
Paola Cinnella
Patrick Gallinari
AI4CE
25
54
0
15 Dec 2022
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Valentin Duruisseaux
T. Duong
Melvin Leok
Nikolay A. Atanasov
DRL
AI4CE
8
11
0
29 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
17
16
0
24 Oct 2022
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
28
11
0
11 Oct 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
38
10
0
05 Oct 2022
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
39
12
0
23 Sep 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
33
8
0
23 Sep 2022
Bayesian Identification of Nonseparable Hamiltonian Systems Using Stochastic Dynamic Models
Harsh Sharma
Nicholas Galioto
Alex A. Gorodetsky
Boris Kramer
27
3
0
15 Sep 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
10
4
0
22 Aug 2022
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
25
2
0
19 Aug 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
23
22
0
26 Jul 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
27
84
0
13 Apr 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
27
31
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
21
32
0
17 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
13
39
0
10 Feb 2022
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
36
17
0
31 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
35
26
0
25 Jan 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
19
5
0
20 Jan 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
25
28
0
16 Dec 2021
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
21
3
0
30 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
34
7
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
14
28
0
09 Nov 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
30
24
0
11 Sep 2021
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
Karl Otness
Arvi Gjoka
Joan Bruna
Daniele Panozzo
Benjamin Peherstorfer
T. Schneider
Denis Zorin
19
23
0
09 Aug 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
31
42
0
23 Jun 2021
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
11
34
0
22 Jun 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
9
25
0
25 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
15
23
0
19 Feb 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
27
132
0
09 Oct 2020
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
T. Konstantin Rusch
Siddhartha Mishra
19
88
0
02 Oct 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
20
25
0
23 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
22
107
0
22 Jun 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
422
0
10 Mar 2020
1
2
Next