ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09338
  4. Cited By
A Simple yet Effective Baseline for Robust Deep Learning with Noisy
  Labels

A Simple yet Effective Baseline for Robust Deep Learning with Noisy Labels

20 September 2019
Yucen Luo
Jun Zhu
Tomas Pfister
    NoLa
ArXivPDFHTML

Papers citing "A Simple yet Effective Baseline for Robust Deep Learning with Noisy Labels"

4 / 4 papers shown
Title
A Learning Paradigm for Interpretable Gradients
A Learning Paradigm for Interpretable Gradients
Felipe Figueroa
Hanwei Zhang
R. Sicre
Yannis Avrithis
Stéphane Ayache
FAtt
23
0
0
23 Apr 2024
Mean teachers are better role models: Weight-averaged consistency
  targets improve semi-supervised deep learning results
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
267
1,275
0
06 Mar 2017
Learning from Binary Labels with Instance-Dependent Corruption
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
Bayesian Inference with Posterior Regularization and applications to
  Infinite Latent SVMs
Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs
Jun Zhu
Ning Chen
Eric P. Xing
BDL
67
157
0
05 Oct 2012
1