ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.03309
  4. Cited By
Exploring Temporal Differences in 3D Convolutional Neural Networks

Exploring Temporal Differences in 3D Convolutional Neural Networks

7 September 2019
Gagan Kanojia
Sudhakar Kumawat
Shanmuganathan Raman
    3DPC
    AI4TS
ArXivPDFHTML

Papers citing "Exploring Temporal Differences in 3D Convolutional Neural Networks"

12 / 12 papers shown
Title
Motion Feature Network: Fixed Motion Filter for Action Recognition
Motion Feature Network: Fixed Motion Filter for Action Recognition
Myunggi Lee
Seungeui Lee
S. Son
Gyutae Park
Nojun Kwak
75
122
0
26 Jul 2018
Spatio-Temporal Channel Correlation Networks for Action Classification
Spatio-Temporal Channel Correlation Networks for Action Classification
Ali Diba
Mohsen Fayyaz
Vivek Sharma
M. M. Arzani
Rahman Yousefzadeh
Juergen Gall
Luc Van Gool
3DPC
65
181
0
19 Jun 2018
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in
  Video Classification
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification
Saining Xie
Chen Sun
Jonathan Huang
Zhuowen Tu
Kevin Patrick Murphy
3DH
142
1,330
0
13 Dec 2017
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Kensho Hara
Hirokatsu Kataoka
Y. Satoh
3DPC
123
1,934
0
27 Nov 2017
ConvNet Architecture Search for Spatiotemporal Feature Learning
ConvNet Architecture Search for Spatiotemporal Feature Learning
Du Tran
Jamie Ray
Zheng Shou
Shih-Fu Chang
Manohar Paluri
3DPC
75
383
0
16 Aug 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
514
10,330
0
16 Nov 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
308
1,953
0
24 Oct 2016
Temporal Segment Networks: Towards Good Practices for Deep Action
  Recognition
Temporal Segment Networks: Towards Good Practices for Deep Action Recognition
Limin Wang
Yuanjun Xiong
Zhe Wang
Yu Qiao
Dahua Lin
Xiaoou Tang
Luc Van Gool
ViT
102
3,835
0
02 Aug 2016
Orientation-boosted Voxel Nets for 3D Object Recognition
Orientation-boosted Voxel Nets for 3D Object Recognition
Nima Sedaghat
Mohammadreza Zolfaghari
Ehsan Amiri
Thomas Brox
3DPC
61
224
0
12 Apr 2016
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
311
4,177
0
26 Apr 2015
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
K. Soomro
Amir Zamir
M. Shah
CLIP
VGen
150
6,148
0
03 Dec 2012
1