ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.11853
  4. Cited By
BooVAE: Boosting Approach for Continual Learning of VAE
v1v2v3 (latest)

BooVAE: Boosting Approach for Continual Learning of VAE

30 August 2019
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
    CLL
ArXiv (abs)PDFHTML

Papers citing "BooVAE: Boosting Approach for Continual Learning of VAE"

22 / 22 papers shown
Title
Unsupervised anomaly localization using VAE and beta-VAE
Unsupervised anomaly localization using VAE and beta-VAE
Leixin Zhou
Wenxiang Deng
Xiaodong Wu
DRL
68
16
0
19 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
470
10,591
0
17 Feb 2020
Continual Unsupervised Representation Learning
Continual Unsupervised Representation Learning
Dushyant Rao
Francesco Visin
Andrei A. Rusu
Yee Whye Teh
Razvan Pascanu
R. Hadsell
BDLCLLSSLDRL
34
261
0
31 Oct 2019
MaxEntropy Pursuit Variational Inference
MaxEntropy Pursuit Variational Inference
Evgenii Egorov
Kirill Neklyudov
R. Kostoev
Evgeny Burnaev
BDL
31
3
0
20 May 2019
Generative Models from the perspective of Continual Learning
Generative Models from the perspective of Continual Learning
Timothée Lesort
Hugo Caselles-Dupré
Michael Garcia Ortiz
Andrei Stoian
David Filliat
VLMDiffM
49
156
0
21 Dec 2018
Life-Long Disentangled Representation Learning with Cross-Domain Latent
  Homologies
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies
Alessandro Achille
Tom Eccles
Loic Matthey
Christopher P. Burgess
Nicholas Watters
Alexander Lerchner
I. Higgins
BDL
73
119
0
20 Aug 2018
Measuring and regularizing networks in function space
Measuring and regularizing networks in function space
Ari S. Benjamin
David Rolnick
Konrad Paul Kording
48
140
0
21 May 2018
Rotate your Networks: Better Weight Consolidation and Less Catastrophic
  Forgetting
Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting
Xialei Liu
Marc Masana
Luis Herranz
Joost van de Weijer
Antonio M. López
Andrew D. Bagdanov
CLL
85
278
0
08 Feb 2018
A Note on the Inception Score
A Note on the Inception Score
Shane T. Barratt
Rishi Sharma
EGVM
99
694
0
06 Jan 2018
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLLVLMBDL
89
734
0
29 Oct 2017
Boosting Variational Inference: an Optimization Perspective
Boosting Variational Inference: an Optimization Perspective
Francesco Locatello
Rajiv Khanna
Joydeep Ghosh
Gunnar Rätsch
56
36
0
05 Aug 2017
Continual Learning with Deep Generative Replay
Continual Learning with Deep Generative Replay
Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
KELMCLL
80
2,080
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
66
635
0
19 May 2017
Nonparametric Variational Auto-encoders for Hierarchical Representation
  Learning
Nonparametric Variational Auto-encoders for Hierarchical Representation Learning
Prasoon Goyal
Zhiting Hu
Xiaodan Liang
Chenyu Wang
Eric Xing
CMLBDL
66
117
0
21 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
372
7,547
0
02 Dec 2016
Variational Boosting: Iteratively Refining Posterior Approximations
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
51
125
0
20 Nov 2016
Boosting Variational Inference
Boosting Variational Inference
Fangjian Guo
Xiangyu Wang
Kai Fan
Tamara Broderick
David B. Dunson
BDL
116
76
0
17 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
304
4,423
0
29 Jun 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLLAI4CE
77
2,463
0
15 Jun 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
60
219
0
20 May 2016
Functional Frank-Wolfe Boosting for General Loss Functions
Functional Frank-Wolfe Boosting for General Loss Functions
Chu Wang
Yingfei Wang
E. Weinan
Robert Schapire
45
19
0
09 Oct 2015
Nonparametric variational inference
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
104
154
0
18 Jun 2012
1