Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.09961
Cited By
Theory and Evaluation Metrics for Learning Disentangled Representations
26 August 2019
Kien Do
T. Tran
CoGe
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theory and Evaluation Metrics for Learning Disentangled Representations"
23 / 23 papers shown
Title
Towards a Unified Representation Evaluation Framework Beyond Downstream Tasks
Christos Plachouras
Julien Guinot
George Fazekas
Elio Quinton
Emmanouil Benetos
Johan Pauwels
155
0
0
09 May 2025
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
23
0
0
25 Oct 2024
Understanding Pose and Appearance Disentanglement in 3D Human Pose Estimation
K. K. Nakka
Mathieu Salzmann
DRL
CoGe
26
2
0
20 Sep 2023
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
29
0
0
21 Aug 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
38
32
0
20 May 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
38
3
0
11 May 2023
TC-VAE: Uncovering Out-of-Distribution Data Generative Factors
Cristian Meo
Anirudh Goyal
Justin Dauwels
DRL
CoGe
CML
27
2
0
08 Apr 2023
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
37
3
0
05 Apr 2023
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Lyle Regenwetter
Akash Srivastava
Dan Gutfreund
Faez Ahmed
24
28
0
06 Feb 2023
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
35
78
0
21 Nov 2022
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
Modular Representations for Weak Disentanglement
Andrea Valenti
D. Bacciu
33
0
0
12 Sep 2022
Leveraging Relational Information for Learning Weakly Disentangled Representations
Andrea Valenti
D. Bacciu
CoGe
DRL
29
5
0
20 May 2022
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes
Karn N. Watcharasupat
Alexander Lerch
26
2
0
11 Oct 2021
Vector-Decomposed Disentanglement for Domain-Invariant Object Detection
Aming Wu
R. Liu
Yahong Han
Linchao Zhu
Yi Yang
35
103
0
15 Aug 2021
Unsupervised Skill Discovery with Bottleneck Option Learning
Jaekyeom Kim
Seohong Park
Gunhee Kim
32
32
0
27 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
35
22
0
07 Jun 2021
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
51
38
0
07 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
29
18
0
27 Aug 2020
Disentangle, align and fuse for multimodal and semi-supervised image segmentation
A. Chartsias
G. Papanastasiou
Chengjia Wang
S. Semple
D. Newby
R. Dharmakumar
Sotirios A. Tsaftaris
24
13
0
11 Nov 2019
1