ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.07643
  4. Cited By
AdaCliP: Adaptive Clipping for Private SGD

AdaCliP: Adaptive Clipping for Private SGD

20 August 2019
Venkatadheeraj Pichapati
A. Suresh
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
ArXivPDFHTML

Papers citing "AdaCliP: Adaptive Clipping for Private SGD"

33 / 33 papers shown
Title
Spectral and Temporal Denoising for Differentially Private Optimization
Spectral and Temporal Denoising for Differentially Private Optimization
Hyeju Shin
Kyudan Jung
Seongwon Yun
Juyoung Yun
38
0
0
07 May 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
58
0
0
29 Mar 2025
DPDR: Gradient Decomposition and Reconstruction for Differentially
  Private Deep Learning
DPDR: Gradient Decomposition and Reconstruction for Differentially Private Deep Learning
Yixuan Liu
Li Xiong
Yuhan Liu
Yujie Gu
Ruixuan Liu
Hong Chen
40
1
0
04 Jun 2024
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
52
1
0
06 Dec 2023
The Relative Gaussian Mechanism and its Application to Private Gradient
  Descent
The Relative Gaussian Mechanism and its Application to Private Gradient Descent
Hadrien Hendrikx
Paul Mangold
A. Bellet
33
1
0
29 Aug 2023
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
Bryn Elesedy
Marcus Hutter
19
1
0
06 Feb 2023
Exploring the Limits of Differentially Private Deep Learning with
  Group-wise Clipping
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
30
46
0
03 Dec 2022
Adap DP-FL: Differentially Private Federated Learning with Adaptive
  Noise
Adap DP-FL: Differentially Private Federated Learning with Adaptive Noise
Jie Fu
Zhili Chen
Xiao Han
FedML
25
28
0
29 Nov 2022
Differentially Private Image Classification from Features
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
Private Ad Modeling with DP-SGD
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
32
14
0
21 Nov 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with
  Importance Sampling
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
46
20
0
18 Oct 2022
On Privacy and Personalization in Cross-Silo Federated Learning
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
52
0
16 Jun 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
Disparate Impact in Differential Privacy from Gradient Misalignment
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
29
25
0
15 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and
  Stronger
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
27
69
0
14 Jun 2022
Nonlinear gradient mappings and stochastic optimization: A general
  framework with applications to heavy-tail noise
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
19
12
0
06 Apr 2022
Differentially Private Learning Needs Hidden State (Or Much Faster
  Convergence)
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
Jiayuan Ye
Reza Shokri
FedML
29
44
0
10 Mar 2022
Private Adaptive Optimization with Side Information
Private Adaptive Optimization with Side Information
Tian Li
Manzil Zaheer
Sashank J. Reddi
Virginia Smith
37
35
0
12 Feb 2022
Toward Training at ImageNet Scale with Differential Privacy
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
36
100
0
28 Jan 2022
Gradient Leakage Attack Resilient Deep Learning
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
27
46
0
25 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
30
5
0
01 Dec 2021
Differentially Private Coordinate Descent for Composite Empirical Risk
  Minimization
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
DPNAS: Neural Architecture Search for Deep Learning with Differential
  Privacy
DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy
Anda Cheng
Jiaxing Wang
Xi Sheryl Zhang
Qiang Chen
Peisong Wang
Jian Cheng
30
27
0
16 Oct 2021
Adaptive Differentially Private Empirical Risk Minimization
Adaptive Differentially Private Empirical Risk Minimization
Xiaoxia Wu
Lingxiao Wang
Irina Cristali
Quanquan Gu
Rebecca Willett
38
6
0
14 Oct 2021
NanoBatch Privacy: Enabling fast Differentially Private learning on the
  IPU
NanoBatch Privacy: Enabling fast Differentially Private learning on the IPU
Edward H. Lee
M. M. Krell
Alexander Tsyplikhin
Victoria Rege
E. Colak
Kristen W. Yeom
FedML
21
0
0
24 Sep 2021
Efficient Hyperparameter Optimization for Differentially Private Deep
  Learning
Efficient Hyperparameter Optimization for Differentially Private Deep Learning
Aman Priyanshu
Rakshit Naidu
Fatemehsadat Mireshghallah
Mohammad Malekzadeh
25
5
0
09 Aug 2021
Large-Scale Differentially Private BERT
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
36
131
0
03 Aug 2021
Private Adaptive Gradient Methods for Convex Optimization
Private Adaptive Gradient Methods for Convex Optimization
Hilal Asi
John C. Duchi
Alireza Fallah
O. Javidbakht
Kunal Talwar
19
53
0
25 Jun 2021
Understanding Clipping for Federated Learning: Convergence and
  Client-Level Differential Privacy
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
30
91
0
25 Jun 2021
DataLens: Scalable Privacy Preserving Training via Gradient Compression
  and Aggregation
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation
Wei Ping
Fan Wu
Yunhui Long
Luka Rimanic
Ce Zhang
Bo-wen Li
FedML
45
63
0
20 Mar 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine
  Learning
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Fast Dimension Independent Private AdaGrad on Publicly Estimated
  Subspaces
Fast Dimension Independent Private AdaGrad on Publicly Estimated Subspaces
Peter Kairouz
Mónica Ribero
Keith Rush
Abhradeep Thakurta
93
14
0
14 Aug 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via
  Private Gradient Descent
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
29
50
0
11 Jun 2020
Differentially Private Learning with Adaptive Clipping
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
19
330
0
09 May 2019
1