ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.07380
  4. Cited By
PAC-Bayes with Backprop

PAC-Bayes with Backprop

19 August 2019
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
ArXivPDFHTML

Papers citing "PAC-Bayes with Backprop"

9 / 9 papers shown
Title
Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss
Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss
Yi-Shan Wu
Yijie Zhang
Badr-Eddine Chérief-Abdellatif
Yevgeny Seldin
68
2
0
23 May 2024
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
134
113
0
05 Jun 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
62
145
0
26 Dec 2017
A PAC-Bayesian Analysis of Randomized Learning with Application to
  Stochastic Gradient Descent
A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent
Ben London
44
79
0
19 Sep 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for
  Neural Networks
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
80
606
0
29 Jul 2017
Exploring Generalization in Deep Learning
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
148
1,255
0
27 Jun 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
813
0
31 Mar 2017
A Strongly Quasiconvex PAC-Bayesian Bound
A Strongly Quasiconvex PAC-Bayesian Bound
Niklas Thiemann
Christian Igel
Olivier Wintenberger
Yevgeny Seldin
48
83
0
19 Aug 2016
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
1