ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06297
  4. Cited By
Rotation Invariant Convolutions for 3D Point Clouds Deep Learning

Rotation Invariant Convolutions for 3D Point Clouds Deep Learning

17 August 2019
Zhiyuan Zhang
Binh-Son Hua
D. Rosen
Sai-Kit Yeung
    3DPC
ArXivPDFHTML

Papers citing "Rotation Invariant Convolutions for 3D Point Clouds Deep Learning"

35 / 35 papers shown
Title
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging
Ali Alawieh
Alexandru P. Condurache
3DPC
58
0
0
07 May 2025
HFBRI-MAE: Handcrafted Feature Based Rotation-Invariant Masked Autoencoder for 3D Point Cloud Analysis
HFBRI-MAE: Handcrafted Feature Based Rotation-Invariant Masked Autoencoder for 3D Point Cloud Analysis
Xuanhua Yin
Dingxin Zhang
Jianhui Yu
Weidong Cai
25
0
0
19 Apr 2025
Rotation Perturbation Robustness in Point Cloud Analysis: A Perspective
  of Manifold Distillation
Rotation Perturbation Robustness in Point Cloud Analysis: A Perspective of Manifold Distillation
Xinyu Xu
Huazhen Liu
Feiming Wei
Huilin Xiong
W. Yu
Tao Zhang
3DPC
31
0
0
04 Nov 2024
Sampling Foundational Transformer: A Theoretical Perspective
Sampling Foundational Transformer: A Theoretical Perspective
Viet Anh Nguyen
Minh Lenhat
Khoa Nguyen
Duong Duc Hieu
Dao Huu Hung
Truong Son-Hy
44
0
0
11 Aug 2024
Rethinking Attention Module Design for Point Cloud Analysis
Rethinking Attention Module Design for Point Cloud Analysis
Chengzhi Wu
Kaige Wang
Zeyun Zhong
Hao Fu
Junwei Zheng
Jiaming Zhang
Julius Pfrommer
Jürgen Beyerer
3DPC
51
1
0
27 Jul 2024
Enhancing Robustness to Noise Corruption for Point Cloud Model via
  Spatial Sorting and Set-Mixing Aggregation Module
Enhancing Robustness to Noise Corruption for Point Cloud Model via Spatial Sorting and Set-Mixing Aggregation Module
Dingxin Zhang
Jianhui Yu
Tengfei Xue
Chaoyi Zhang
Dongnan Liu
Weidong Cai
3DPC
46
0
0
15 Jul 2024
An intuitive multi-frequency feature representation for
  SO(3)-equivariant networks
An intuitive multi-frequency feature representation for SO(3)-equivariant networks
Dongwon Son
Jaehyung Kim
Sanghyeon Son
Beomjoon Kim
3DPC
38
1
0
15 Mar 2024
MaskLRF: Self-supervised Pretraining via Masked Autoencoding of Local
  Reference Frames for Rotation-invariant 3D Point Set Analysis
MaskLRF: Self-supervised Pretraining via Masked Autoencoding of Local Reference Frames for Rotation-invariant 3D Point Set Analysis
Takahiko Furuya
3DPC
43
2
0
01 Mar 2024
Cloud-RAIN: Point Cloud Analysis with Reflectional Invariance
Cloud-RAIN: Point Cloud Analysis with Reflectional Invariance
Yiming Cui
Lecheng Ruan
Hang Dong
Qiang Li
Zhongming Wu
T. Zeng
Fengyu Fan
3DPC
35
0
0
13 May 2023
A Closer Look at Few-Shot 3D Point Cloud Classification
A Closer Look at Few-Shot 3D Point Cloud Classification
Chuangguan Ye
Hongyuan Zhu
Bo-Wen Zhang
Tao Chen
3DPC
26
15
0
31 Mar 2023
CRIN: Rotation-Invariant Point Cloud Analysis and Rotation Estimation
  via Centrifugal Reference Frame
CRIN: Rotation-Invariant Point Cloud Analysis and Rotation Estimation via Centrifugal Reference Frame
Yujing Lou
Zelin Ye
Yang You
Nianjuan Jiang
Jiangbo Lu
Weiming Wang
Lizhuang Ma
Cewu Lu
3DPC
44
7
0
06 Mar 2023
General Rotation Invariance Learning for Point Clouds via Weight-Feature
  Alignment
General Rotation Invariance Learning for Point Clouds via Weight-Feature Alignment
Liang Xie
Yibo Yang
Wenxiao Wang
Binbin Lin
Deng Cai
Xiaofei He
Ronghua Liang
3DPC
24
2
0
20 Feb 2023
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
Pavlo Melnyk
Andreas Robinson
M. Felsberg
Maarten Wadenback
3DPC
23
2
0
26 Nov 2022
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
41
61
0
11 Nov 2022
Learning a Task-specific Descriptor for Robust Matching of 3D Point
  Clouds
Learning a Task-specific Descriptor for Robust Matching of 3D Point Clouds
Zhiyuan Zhang
Yuchao Dai
Bin Fan
Jiadai Sun
Mingyi He
3DPC
43
7
0
26 Oct 2022
Frame Mining: a Free Lunch for Learning Robotic Manipulation from 3D
  Point Clouds
Frame Mining: a Free Lunch for Learning Robotic Manipulation from 3D Point Clouds
Minghua Liu
Xuanlin Li
Z. Ling
Yangyan Li
Hao Su
36
31
0
14 Oct 2022
RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud
  Registration
RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud Registration
Hao Yu
Jiafan Hou
Zheng Qin
Mahdi Saleh
I. Shugurov
Kai Wang
Benjamin Busam
Slobodan Ilic
52
39
0
27 Sep 2022
PointConvFormer: Revenge of the Point-based Convolution
PointConvFormer: Revenge of the Point-based Convolution
Wenxuan Wu
Li Fuxin
Qi Shan
3DPC
25
30
0
04 Aug 2022
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
  Networks on Homogeneous Spaces
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces
Yinshuang Xu
Jiahui Lei
Edgar Dobriban
Kostas Daniilidis
23
19
0
16 Jun 2022
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
Serge Assaad
Carlton Downey
Rami Al-Rfou
Nigamaa Nayakanti
Benjamin Sapp
36
18
0
08 Jun 2022
A Simple and Universal Rotation Equivariant Point-cloud Network
A Simple and Universal Rotation Equivariant Point-cloud Network
Ben Finkelshtein
Chaim Baskin
Haggai Maron
Nadav Dym
3DPC
29
13
0
02 Mar 2022
Benchmarking and Analyzing Point Cloud Classification under Corruptions
Benchmarking and Analyzing Point Cloud Classification under Corruptions
Jiawei Ren
Liang Pan
Ziwei Liu
3DPC
19
80
0
07 Feb 2022
Frame Averaging for Equivariant Shape Space Learning
Frame Averaging for Equivariant Shape Space Learning
Matan Atzmon
Koki Nagano
Sanja Fidler
S. Khamis
Y. Lipman
FedML
30
13
0
03 Dec 2021
Robust Pooling through the Data Mode
Robust Pooling through the Data Mode
Ayman Mukhaimar
Ruwan Tennakoon
Chow Yin Lai
R. Hoseinnezhad
A. Bab-Hadiashar
3DPC
3DV
OOD
16
3
0
21 Jun 2021
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
111
315
0
25 Apr 2021
Learning Rotation-Invariant Representations of Point Clouds Using
  Aligned Edge Convolutional Neural Networks
Learning Rotation-Invariant Representations of Point Clouds Using Aligned Edge Convolutional Neural Networks
Junming Zhang
Ming-Yuan Yu
Ram Vasudevan
Matthew Johnson-Roberson
3DPC
34
24
0
02 Jan 2021
ODFNet: Using orientation distribution functions to characterize 3D
  point clouds
ODFNet: Using orientation distribution functions to characterize 3D point clouds
Y. Sahin
Alican Mertan
Gözde B. Ünal
3DPC
21
7
0
08 Dec 2020
Deep Positional and Relational Feature Learning for Rotation-Invariant
  Point Cloud Analysis
Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu
Xin Wei
Federico Tombari
Jian Sun
3DPC
22
37
0
18 Nov 2020
Learning to Orient Surfaces by Self-supervised Spherical CNNs
Learning to Orient Surfaces by Self-supervised Spherical CNNs
Riccardo Spezialetti
Federico Stella
M. Marcon
Luciano Silva
Samuele Salti
Luigi Di Stefano
11
40
0
06 Nov 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
45
665
0
18 Jun 2020
A Rotation-Invariant Framework for Deep Point Cloud Analysis
A Rotation-Invariant Framework for Deep Point Cloud Analysis
Xianzhi Li
Ruihui Li
Guangyong Chen
Chi-Wing Fu
Daniel Cohen-Or
Pheng-Ann Heng
3DPC
117
109
0
16 Mar 2020
Triangle-Net: Towards Robustness in Point Cloud Learning
Triangle-Net: Towards Robustness in Point Cloud Learning
Chenxi Xiao
J. Wachs
3DH
3DPC
31
34
0
27 Feb 2020
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV
3DPC
152
769
0
30 Mar 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1