Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05355
Cited By
The generalization error of random features regression: Precise asymptotics and double descent curve
14 August 2019
Song Mei
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The generalization error of random features regression: Precise asymptotics and double descent curve"
50 / 129 papers shown
Title
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
31
4
0
06 Sep 2022
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
30
11
0
03 Jun 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
32
18
0
27 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
53
15
0
13 May 2022
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel Matrices with Polynomial Scalings
Yue M. Lu
H. Yau
24
24
0
12 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
40
121
0
03 May 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
22
6
0
14 Apr 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
32
13
0
22 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
52
7
0
07 Mar 2022
Estimation under Model Misspecification with Fake Features
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
27
11
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
38
14
0
06 Feb 2022
Quantifying Relevance in Learning and Inference
M. Marsili
Y. Roudi
14
18
0
01 Feb 2022
The Effect of Model Size on Worst-Group Generalization
Alan Pham
Eunice Chan
V. Srivatsa
Dhruba Ghosh
Yaoqing Yang
Yaodong Yu
Ruiqi Zhong
Joseph E. Gonzalez
Jacob Steinhardt
23
5
0
08 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
Tight bounds for minimum l1-norm interpolation of noisy data
Guillaume Wang
Konstantin Donhauser
Fanny Yang
79
20
0
10 Nov 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
35
12
0
21 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
26
26
0
01 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
35
18
0
20 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
31
71
0
06 Sep 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
21
35
0
14 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
Arthur Gretton
MLT
33
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
25
9
0
04 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
AdaBoost and robust one-bit compressed sensing
Geoffrey Chinot
Felix Kuchelmeister
Matthias Löffler
Sara van de Geer
35
5
0
05 May 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
28
7
0
16 Feb 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
35
135
0
16 Feb 2021
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
15
11
0
12 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
20
17
0
15 Jan 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
25
81
0
21 Dec 2020
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
35
50
0
16 Dec 2020
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Yan Sun
Michael W. Mahoney
23
21
0
21 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
77
670
0
06 Nov 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
18
41
0
26 Oct 2020
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Fan Yang
Hongyang R. Zhang
Sen Wu
Christopher Ré
Weijie J. Su
58
10
0
22 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
28
62
0
21 Oct 2020
On the proliferation of support vectors in high dimensions
Daniel J. Hsu
Vidya Muthukumar
Ji Xu
26
42
0
22 Sep 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
28
61
0
03 Aug 2020
Previous
1
2
3
Next