Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05355
Cited By
v1
v2
v3
v4
v5 (latest)
The generalization error of random features regression: Precise asymptotics and double descent curve
14 August 2019
Song Mei
Andrea Montanari
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The generalization error of random features regression: Precise asymptotics and double descent curve"
50 / 227 papers shown
Title
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
72
6
0
14 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
96
8
0
19 Sep 2022
Importance Tempering: Group Robustness for Overparameterized Models
Yiping Lu
Wenlong Ji
Zachary Izzo
Lexing Ying
87
7
0
19 Sep 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
126
11
0
14 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
152
4
0
06 Sep 2022
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
68
6
0
27 Aug 2022
Investigating the Impact of Model Width and Density on Generalization in Presence of Label Noise
Yihao Xue
Kyle Whitecross
Baharan Mirzasoleiman
NoLa
72
1
0
17 Aug 2022
A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors
Nikhil Ghosh
M. Belkin
74
7
0
23 Jul 2022
How does overparametrization affect performance on minority groups?
Subha Maity
Saptarshi Roy
Songkai Xue
Mikhail Yurochkin
Yuekai Sun
62
3
0
07 Jun 2022
Generalization for multiclass classification with overparameterized linear models
Vignesh Subramanian
Rahul Arya
A. Sahai
AI4CE
73
9
0
03 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
79
11
0
03 Jun 2022
Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions
Kiwon Lee
Andrew N. Cheng
Courtney Paquette
Elliot Paquette
87
14
0
02 Jun 2022
Optimal Activation Functions for the Random Features Regression Model
Jianxin Wang
José Bento
63
3
0
31 May 2022
Precise Learning Curves and Higher-Order Scaling Limits for Dot Product Kernel Regression
Lechao Xiao
Hong Hu
Theodor Misiakiewicz
Yue M. Lu
Jeffrey Pennington
125
20
0
30 May 2022
Gaussian Universality of Perceptrons with Random Labels
Federica Gerace
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
Lenka Zdeborová
104
24
0
26 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
92
16
0
13 May 2022
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel Matrices with Polynomial Scalings
Yue M. Lu
H. Yau
65
26
0
12 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
96
129
0
03 May 2022
Ridgeless Regression with Random Features
Jian Li
Yong-Jin Liu
Yingying Zhang
39
2
0
01 May 2022
Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression
Theodor Misiakiewicz
54
40
0
21 Apr 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
90
6
0
14 Apr 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
75
13
0
22 Mar 2022
More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize
Alexander Wei
Wei Hu
Jacob Steinhardt
109
72
0
11 Mar 2022
Bias-variance decomposition of overparameterized regression with random linear features
J. Rocks
Pankaj Mehta
67
12
0
10 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
136
8
0
07 Mar 2022
Estimation under Model Misspecification with Fake Features
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
33
11
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
133
28
0
01 Mar 2022
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
135
687
0
21 Feb 2022
Memorize to Generalize: on the Necessity of Interpolation in High Dimensional Linear Regression
Chen Cheng
John C. Duchi
Rohith Kuditipudi
56
12
0
20 Feb 2022
Interpolation and Regularization for Causal Learning
L. C. Vankadara
Luca Rendsburg
U. V. Luxburg
Debarghya Ghoshdastidar
CML
50
1
0
18 Feb 2022
Universality of empirical risk minimization
Andrea Montanari
Basil Saeed
OOD
82
78
0
17 Feb 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
93
90
0
14 Feb 2022
Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
110
75
0
11 Feb 2022
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
Fabrizio Pittorino
Antonio Ferraro
Gabriele Perugini
Christoph Feinauer
Carlo Baldassi
R. Zecchina
263
26
0
07 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
119
15
0
06 Feb 2022
Data-driven emergence of convolutional structure in neural networks
Alessandro Ingrosso
Sebastian Goldt
120
38
0
01 Feb 2022
Towards Sample-efficient Overparameterized Meta-learning
Yue Sun
Adhyyan Narang
Halil Ibrahim Gulluk
Samet Oymak
Maryam Fazel
BDL
60
25
0
16 Jan 2022
On generalization bounds for deep networks based on loss surface implicit regularization
Masaaki Imaizumi
Johannes Schmidt-Hieber
ODL
68
3
0
12 Jan 2022
The dynamics of representation learning in shallow, non-linear autoencoders
Maria Refinetti
Sebastian Goldt
AI4CE
63
17
0
06 Jan 2022
The Effect of Model Size on Worst-Group Generalization
Alan Pham
Eunice Chan
V. Srivatsa
Dhruba Ghosh
Yaoqing Yang
Yaodong Yu
Ruiqi Zhong
Joseph E. Gonzalez
Jacob Steinhardt
62
5
0
08 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
86
19
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
105
27
0
06 Dec 2021
Tight bounds for minimum l1-norm interpolation of noisy data
Guillaume Wang
Konstantin Donhauser
Fanny Yang
137
20
0
10 Nov 2021
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
184
11
0
09 Nov 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
123
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
109
12
0
21 Oct 2021
On the Double Descent of Random Features Models Trained with SGD
Fanghui Liu
Johan A. K. Suykens
Volkan Cevher
MLT
101
10
0
13 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
88
27
0
01 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
69
1
0
27 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
104
20
0
20 Sep 2021
Previous
1
2
3
4
5
Next