Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05355
Cited By
v1
v2
v3
v4
v5 (latest)
The generalization error of random features regression: Precise asymptotics and double descent curve
14 August 2019
Song Mei
Andrea Montanari
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The generalization error of random features regression: Precise asymptotics and double descent curve"
50 / 240 papers shown
Title
Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias
Yuanzhe Hu
Kinshuk Goel
Vlad Killiakov
Yaoqing Yang
70
2
0
06 Jun 2025
Models of Heavy-Tailed Mechanistic Universality
Liam Hodgkinson
Zhichao Wang
Michael W. Mahoney
84
1
0
04 Jun 2025
Statistical mechanics of extensive-width Bayesian neural networks near interpolation
Jean Barbier
Francesco Camilli
Minh-Toan Nguyen
Mauro Pastore
Rudy Skerk
49
0
0
30 May 2025
On the Emergence of Weak-to-Strong Generalization: A Bias-Variance Perspective
Gengze Xu
Wei Yao
Ziqiao Wang
Yong Liu
54
0
0
30 May 2025
Directional Convergence, Benign Overfitting of Gradient Descent in leaky ReLU two-layer Neural Networks
Ichiro Hashimoto
MLT
81
0
0
22 May 2025
A dynamic view of the double descent
Vivek Shripad Borkar
160
0
0
03 May 2025
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
279
1
0
21 Apr 2025
Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry
Chi-Ning Chou
Hang Le
Yichen Wang
SueYeon Chung
95
0
0
23 Mar 2025
Quantifying Overfitting along the Regularization Path for Two-Part-Code MDL in Supervised Classification
Xiaohan Zhu
Nathan Srebro
127
0
0
03 Mar 2025
Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
O. Duranthon
L. Zdeborová
116
0
0
03 Mar 2025
Asymptotic Analysis of Two-Layer Neural Networks after One Gradient Step under Gaussian Mixtures Data with Structure
Samet Demir
Zafer Dogan
MLT
94
0
0
02 Mar 2025
Correlating and Predicting Human Evaluations of Language Models from Natural Language Processing Benchmarks
Rylan Schaeffer
Punit Singh Koura
Binh Tang
R. Subramanian
Aaditya K. Singh
...
Vedanuj Goswami
Sergey Edunov
Dieuwke Hupkes
Sanmi Koyejo
Sharan Narang
ALM
158
1
0
24 Feb 2025
Feature maps for the Laplacian kernel and its generalizations
Sudhendu Ahir
Parthe Pandit
103
0
0
24 Feb 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
Cengiz Pehlevan
AI4CE
274
1
0
04 Feb 2025
Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization
Simone Bombari
Marco Mondelli
325
0
0
03 Feb 2025
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
107
1
0
31 Dec 2024
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Xiaosi Gu
Tomoyuki Obuchi
149
0
0
29 Nov 2024
Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
Mouin Ben Ammar
David Brellmann
Arturo Mendoza
Antoine Manzanera
Gianni Franchi
OODD
120
0
0
04 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
137
5
0
24 Oct 2024
Theoretical Limitations of Ensembles in the Age of Overparameterization
Niclas Dern
John P. Cunningham
Geoff Pleiss
BDL
UQCV
98
1
0
21 Oct 2024
Provable Weak-to-Strong Generalization via Benign Overfitting
David X. Wu
A. Sahai
165
11
0
06 Oct 2024
On the Pinsker bound of inner product kernel regression in large dimensions
Weihao Lu
Jialin Ding
Haobo Zhang
Qian Lin
95
1
0
02 Sep 2024
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Huixin Zhang
Sean P. Cornelius
156
2
0
11 Jul 2024
Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view
Mihailo Stojnic
62
1
0
13 Jun 2024
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
Fan He
Mingzhe He
Lei Shi
Xiaolin Huang
Johan A. K. Suykens
83
1
0
03 Jun 2024
High-dimensional Learning with Noisy Labels
Aymane El Firdoussi
M. Seddik
NoLa
33
0
0
23 May 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
Cengiz Pehlevan
118
16
0
20 May 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
179
1
0
18 Apr 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
147
8
0
12 Feb 2024
Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions
Adel Javanmard
Lin Chen
Vahab Mirrokni
Ashwinkumar Badanidiyuru
Gang Fu
73
2
0
20 Jan 2024
Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem
Simon Segert
99
0
0
18 Nov 2023
Orthogonal Random Features: Explicit Forms and Sharp Inequalities
N. Demni
Hachem Kadri
74
1
0
11 Oct 2023
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
104
23
0
11 Oct 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
148
13
0
25 Aug 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
138
16
0
12 Jul 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
105
3
0
23 Jun 2023
Benign Overfitting in Deep Neural Networks under Lazy Training
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Francesco Locatello
Volkan Cevher
AI4CE
71
10
0
30 May 2023
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
100
5
0
29 May 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
136
29
0
29 May 2023
How many samples are needed to leverage smoothness?
Vivien A. Cabannes
Stefano Vigogna
72
2
0
25 May 2023
From Tempered to Benign Overfitting in ReLU Neural Networks
Guy Kornowski
Gilad Yehudai
Ohad Shamir
91
13
0
24 May 2023
Deep neural networks have an inbuilt Occam's razor
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
89
16
0
13 Apr 2023
Per-Example Gradient Regularization Improves Learning Signals from Noisy Data
Xuran Meng
Yuan Cao
Difan Zou
80
5
0
31 Mar 2023
Kernel interpolation generalizes poorly
Yicheng Li
Haobo Zhang
Qian Lin
83
11
0
28 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
93
0
0
24 Mar 2023
Learning curves for deep structured Gaussian feature models
Jacob A. Zavatone-Veth
Cengiz Pehlevan
MLT
95
11
0
01 Mar 2023
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Grigory Khromov
Sidak Pal Singh
168
8
0
21 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
100
19
0
13 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
109
39
0
01 Feb 2023
Bayesian Interpolation with Deep Linear Networks
Boris Hanin
Alexander Zlokapa
153
26
0
29 Dec 2022
1
2
3
4
5
Next