Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05355
Cited By
The generalization error of random features regression: Precise asymptotics and double descent curve
14 August 2019
Song Mei
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The generalization error of random features regression: Precise asymptotics and double descent curve"
50 / 125 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
114
0
0
06 May 2025
A dynamic view of the double descent
Vivek Shripad Borkar
65
0
0
03 May 2025
Online Federation For Mixtures of Proprietary Agents with Black-Box Encoders
Xuwei Yang
Fatemeh Tavakoli
D. B. Emerson
Anastasis Kratsios
FedML
62
0
0
30 Apr 2025
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
66
0
0
21 Apr 2025
Quantifying Overfitting along the Regularization Path for Two-Part-Code MDL in Supervised Classification
Xiaohan Zhu
Nathan Srebro
55
0
0
03 Mar 2025
Asymptotic Analysis of Two-Layer Neural Networks after One Gradient Step under Gaussian Mixtures Data with Structure
Samet Demir
Zafer Dogan
MLT
34
0
0
02 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
64
1
0
04 Feb 2025
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
85
2
0
28 Jan 2025
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Xiaosi Gu
Tomoyuki Obuchi
74
0
0
29 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
56
2
0
24 Oct 2024
Provable Weak-to-Strong Generalization via Benign Overfitting
David X. Wu
A. Sahai
73
6
0
06 Oct 2024
LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning
Liangzu Peng
Juan Elenter
Joshua Agterberg
Alejandro Ribeiro
René Vidal
VLM
CLL
46
1
0
01 Oct 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
C. Pehlevan
29
10
0
20 May 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
82
2
0
29 Apr 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
51
1
0
18 Apr 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
40
8
0
02 Feb 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
19
0
0
08 Jan 2024
Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem
Simon Segert
32
0
0
18 Nov 2023
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
40
19
0
11 Oct 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
31
11
0
12 Jul 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
26
2
0
23 Jun 2023
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
36
2
0
21 Jun 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
28
3
0
17 Jun 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
27
1
0
08 Jun 2023
Unraveling Projection Heads in Contrastive Learning: Insights from Expansion and Shrinkage
Yu Gui
Cong Ma
Yiqiao Zhong
22
6
0
06 Jun 2023
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
31
5
0
29 May 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
29
2
0
28 May 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
57
1
0
25 May 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
28
4
0
20 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
24
11
0
25 Apr 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
16
0
13 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
37
30
0
27 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
Ziye Ma
Igor Molybog
Javad Lavaei
Somayeh Sojoudi
25
3
0
15 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
35
19
0
13 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
36
10
0
03 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
20
35
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
39
49
0
30 Jan 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
High Dimensional Binary Classification under Label Shift: Phase Transition and Regularization
Jiahui Cheng
Minshuo Chen
Hao Liu
Tuo Zhao
Wenjing Liao
36
0
0
01 Dec 2022
Understanding the double descent curve in Machine Learning
Luis Sa-Couto
J. M. Ramos
Miguel Almeida
Andreas Wichert
29
1
0
18 Nov 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
Importance Tempering: Group Robustness for Overparameterized Models
Yiping Lu
Wenlong Ji
Zachary Izzo
Lexing Ying
42
7
0
19 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
31
4
0
06 Sep 2022
1
2
3
Next