ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.05254
  4. Cited By
Optimizing for Interpretability in Deep Neural Networks with Tree
  Regularization

Optimizing for Interpretability in Deep Neural Networks with Tree Regularization

14 August 2019
Mike Wu
S. Parbhoo
M. C. Hughes
Volker Roth
Finale Doshi-Velez
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Optimizing for Interpretability in Deep Neural Networks with Tree Regularization"

10 / 10 papers shown
Title
NIMO: a Nonlinear Interpretable MOdel
Shijian Xu
M. Negri
Volker Roth
FAtt
95
0
0
05 Jun 2025
Smooth InfoMax -- Towards Easier Post-Hoc Interpretability
Smooth InfoMax -- Towards Easier Post-Hoc Interpretability
Fabian Denoodt
Bart de Boer
José Oramas
169
2
0
23 Aug 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGeVLM
287
3
0
28 Dec 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
99
14
0
06 Feb 2023
Interpreting Neural Policies with Disentangled Tree Representations
Interpreting Neural Policies with Disentangled Tree Representations
Tsun-Hsuan Wang
Wei Xiao
Tim Seyde
Ramin Hasani
Daniela Rus
DRL
104
2
0
13 Oct 2022
Interpretable Deep Tracking
Interpretable Deep Tracking
Benjamin Thérien
Krzysztof Czarnecki
84
0
0
03 Oct 2022
A Survey of Neural Trees
A Survey of Neural Trees
Haoling Li
Mingli Song
Mengqi Xue
Haofei Zhang
Jingwen Ye
Lechao Cheng
Mingli Song
AI4CE
95
6
0
07 Sep 2022
On Explaining Decision Trees
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
90
88
0
21 Oct 2020
SIDU: Similarity Difference and Uniqueness Method for Explainable AI
SIDU: Similarity Difference and Uniqueness Method for Explainable AI
Satya M. Muddamsetty
M. N. Jahromi
T. Moeslund
39
11
0
04 Jun 2020
Purifying Interaction Effects with the Functional ANOVA: An Efficient
  Algorithm for Recovering Identifiable Additive Models
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models
Benjamin J. Lengerich
S. Tan
C. Chang
Giles Hooker
R. Caruana
68
42
0
12 Nov 2019
1