ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02893
  4. Cited By
EdgeNet: Semantic Scene Completion from a Single RGB-D Image

EdgeNet: Semantic Scene Completion from a Single RGB-D Image

8 August 2019
Aloisio Dourado
Teofilo de Campos
Hansung Kim
A. Hilton
    3DV
    3DPC
ArXivPDFHTML

Papers citing "EdgeNet: Semantic Scene Completion from a Single RGB-D Image"

7 / 7 papers shown
Title
Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance
Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance
Duc-Hai Pham
Duc Dung Nguyen
Anh Pham
Ho Lai Tuan
P. Nguyen
Khoi Duc Minh Nguyen
Rang Nguyen
3DPC
54
1
0
10 Jan 2025
Unleashing Network Potentials for Semantic Scene Completion
Unleashing Network Potentials for Semantic Scene Completion
Fengyun Wang
Qianru Sun
Dong-Ming Zhang
Jinhui Tang
32
4
0
12 Mar 2024
CasFusionNet: A Cascaded Network for Point Cloud Semantic Scene
  Completion by Dense Feature Fusion
CasFusionNet: A Cascaded Network for Point Cloud Semantic Scene Completion by Dense Feature Fusion
Jinfeng Xu
Xianzhi Li
Yuan Tang
Qiao Yu
Yixue Hao
Long Hu
Min Chen
3DPC
30
13
0
24 Nov 2022
GoToNet: Fast Monocular Scene Exposure and Exploration
GoToNet: Fast Monocular Scene Exposure and Exploration
Tom Avrech
Evgenii Zheltonozhskii
Chaim Baskin
Ehud Rivlin
30
0
0
13 Jun 2022
MonoScene: Monocular 3D Semantic Scene Completion
MonoScene: Monocular 3D Semantic Scene Completion
Anh-Quan Cao
Raoul de Charette
3DV
28
264
0
01 Dec 2021
3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
  Prior
3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior
Xiaokang Chen
Kwan-Yee Lin
Chao Qian
Gang Zeng
Hongsheng Li
3DV
24
131
0
31 Mar 2020
A disciplined approach to neural network hyper-parameters: Part 1 --
  learning rate, batch size, momentum, and weight decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
208
1,020
0
26 Mar 2018
1