Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.01613
Cited By
Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II -- The Finite Horizon Case
5 August 2019
René Carmona
Mathieu Laurière
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II -- The Finite Horizon Case"
20 / 20 papers shown
Title
Gaussian Process Policy Iteration with Additive Schwarz Acceleration for Forward and Inverse HJB and Mean Field Game Problems
Xianjin Yang
Jingguo Zhang
24
0
0
01 May 2025
Modelling Mean-Field Games with Neural Ordinary Differential Equations
Anna C. M. Thöni
Yoram Bachrach
Tal Kachman
38
0
0
17 Apr 2025
Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems
Mo Zhou
Stanley Osher
Wuchen Li
92
3
0
24 Sep 2024
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
20
7
0
04 Dec 2023
Deep Learning for Mean Field Optimal Transport
Sebastian Baudelet
Brieuc Frénais
Mathieu Laurière
Amal Machtalay
Yuchen Zhu
OT
28
2
0
28 Feb 2023
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
38
7
0
11 Feb 2023
Langevin algorithms for Markovian Neural Networks and Deep Stochastic control
Pierre Bras
Gilles Pagès
30
3
0
22 Dec 2022
Deep Generalized Schrödinger Bridge
Guan-Horng Liu
T. Chen
Oswin So
Evangelos A. Theodorou
OT
AI4CE
16
35
0
20 Sep 2022
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
Deep Learning for Principal-Agent Mean Field Games
S. Campbell
Yichao Chen
Arvind Shrivats
S. Jaimungal
29
16
0
03 Oct 2021
Generalization in Mean Field Games by Learning Master Policies
Sarah Perrin
Mathieu Laurière
Julien Pérolat
Romuald Élie
M. Geist
Olivier Pietquin
AI4CE
94
35
0
20 Sep 2021
Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance
René Carmona
Mathieu Laurière
AI4CE
25
26
0
09 Jul 2021
Exploration noise for learning linear-quadratic mean field games
François Delarue
A. Vasileiadis
MLT
34
11
0
02 Jul 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
26
35
0
14 Jun 2021
Scaling up Mean Field Games with Online Mirror Descent
Julien Perolat
Sarah Perrin
Romuald Elie
Mathieu Laurière
Georgios Piliouras
M. Geist
K. Tuyls
Olivier Pietquin
LRM
AI4CE
66
45
0
28 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
35
146
0
22 Dec 2020
Solving stochastic optimal control problem via stochastic maximum principle with deep learning method
Shaolin Ji
S. Peng
Ying Peng
Xichuan Zhang
29
14
0
05 Jul 2020
Gradient Flows for Regularized Stochastic Control Problems
David Siska
Lukasz Szpruch
26
20
0
10 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
38
105
0
11 May 2020
Model-Free Mean-Field Reinforcement Learning: Mean-Field MDP and Mean-Field Q-Learning
René Carmona
Mathieu Laurière
Zongjun Tan
OffRL
34
97
0
28 Oct 2019
1