Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.01580
Cited By
v1
v2
v3 (latest)
The HSIC Bottleneck: Deep Learning without Back-Propagation
5 August 2019
Kurt Wan-Duo Ma
J. P. Lewis
W. Kleijn
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The HSIC Bottleneck: Deep Learning without Back-Propagation"
33 / 33 papers shown
Title
Training neural networks without backpropagation using particles
Deepak Kumar
133
0
0
07 Dec 2024
FLOPS: Forward Learning with OPtimal Sampling
Tao Ren
Zishi Zhang
Jinyang Jiang
Guanghao Li
Zeliang Zhang
Mingqian Feng
Yijie Peng
132
1
0
08 Oct 2024
LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
Sicen Guo
Zhiyuan Wu
Qijun Chen
Ioannis Pitas
Rui Fan
Rui Fan
94
1
0
13 Mar 2024
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
84
0
0
08 Dec 2023
An Information Theory-inspired Strategy for Automatic Network Pruning
Xiawu Zheng
Yuexiao Ma
Teng Xi
Gang Zhang
Errui Ding
Yuchao Li
Jie Chen
Yonghong Tian
Rongrong Ji
179
13
0
19 Aug 2021
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
140
35
0
12 Jun 2020
On Mutual Information Maximization for Representation Learning
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
179
501
0
31 Jul 2019
Feedback alignment in deep convolutional networks
Theodore H. Moskovitz
Ashok Litwin-Kumar
L. F. Abbott
61
61
0
12 Dec 2018
Biologically-plausible learning algorithms can scale to large datasets
Y. Chitour
Honglin Chen
Zhenyu Liao
T. Poggio
73
76
0
08 Nov 2018
A Biologically Plausible Learning Rule for Deep Learning in the Brain
Isabella Pozzi
Michael Felsberg
Fahad Shahbaz Khan
AI4CE
46
31
0
05 Nov 2018
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
132
7
0
27 Oct 2018
Gradient target propagation
T. S. Farias
Jonas Maziero
28
3
0
19 Oct 2018
Estimating Information Flow in Deep Neural Networks
Ziv Goldfeld
E. Berg
Kristjan Greenewald
Igor Melnyk
Nam H. Nguyen
Brian Kingsbury
Yury Polyanskiy
63
32
0
12 Oct 2018
Error Forward-Propagation: Reusing Feedforward Connections to Propagate Errors in Deep Learning
Adam A. Kohan
E. Rietman
H. Siegelmann
85
24
0
09 Aug 2018
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
92
244
0
12 Jul 2018
Beyond Backprop: Online Alternating Minimization with Auxiliary Variables
A. Choromańska
Benjamin Cowen
Yara Rizk
Ronny Luss
Mattia Rigotti
...
Brian Kingsbury
Paolo Diachille
V. Gurev
Ravi Tejwani
Djallel Bouneffouf
75
54
0
24 Jun 2018
Information Constraints on Auto-Encoding Variational Bayes
Romain Lopez
Jeffrey Regier
Michael I. Jordan
N. Yosef
BDL
71
124
0
22 May 2018
"Dependency Bottleneck" in Auto-encoding Architectures: an Empirical Study
Denny Wu
Yixiu Zhao
Yao-Hung Hubert Tsai
M. Yamada
Ruslan Salakhutdinov
43
10
0
15 Feb 2018
Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing
Amir Rosenfeld
John K. Tsotsos
MLT
65
51
0
02 Feb 2018
Learning Independent Features with Adversarial Nets for Non-linear ICA
Philemon Brakel
Yoshua Bengio
OOD
CML
63
94
0
13 Oct 2017
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
55
156
0
06 May 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
111
1,416
0
02 Mar 2017
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
128
1,728
0
01 Dec 2016
A Powerful Generative Model Using Random Weights for the Deep Image Representation
Kun He
Yan Wang
John E. Hopcroft
110
77
0
15 Jun 2016
Towards Biologically Plausible Deep Learning
Yoshua Bengio
Dong-Hyun Lee
J. Bornschein
Thomas Mesnard
Zhouhan Lin
DRL
OOD
82
352
0
14 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks
David Balduzzi
Hastagiri P. Vanchinathan
J. M. Buhmann
FAtt
71
71
0
23 Nov 2014
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
234
8,348
0
06 Nov 2014
Random feedback weights support learning in deep neural networks
Timothy Lillicrap
D. Cownden
D. Tweed
C. Akerman
ODL
72
171
0
02 Nov 2014
CNN Features off-the-shelf: an Astounding Baseline for Recognition
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
159
4,945
0
23 Mar 2014
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
191
4,950
0
06 Oct 2013
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
Dino Sejdinovic
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
124
39
0
02 May 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
531
0
03 Mar 2010
1