ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01580
  4. Cited By
The HSIC Bottleneck: Deep Learning without Back-Propagation
v1v2v3 (latest)

The HSIC Bottleneck: Deep Learning without Back-Propagation

5 August 2019
Kurt Wan-Duo Ma
J. P. Lewis
W. Kleijn
    BDL
ArXiv (abs)PDFHTML

Papers citing "The HSIC Bottleneck: Deep Learning without Back-Propagation"

33 / 33 papers shown
Title
Training neural networks without backpropagation using particles
Training neural networks without backpropagation using particles
Deepak Kumar
133
0
0
07 Dec 2024
FLOPS: Forward Learning with OPtimal Sampling
FLOPS: Forward Learning with OPtimal Sampling
Tao Ren
Zishi Zhang
Jinyang Jiang
Guanghao Li
Zeliang Zhang
Mingqian Feng
Yijie Peng
132
1
0
08 Oct 2024
LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
Sicen Guo
Zhiyuan Wu
Qijun Chen
Ioannis Pitas
Rui Fan
Rui Fan
94
1
0
13 Mar 2024
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
84
0
0
08 Dec 2023
An Information Theory-inspired Strategy for Automatic Network Pruning
An Information Theory-inspired Strategy for Automatic Network Pruning
Xiawu Zheng
Yuexiao Ma
Teng Xi
Gang Zhang
Errui Ding
Yuchao Li
Jie Chen
Yonghong Tian
Rongrong Ji
179
13
0
19 Aug 2021
Kernelized information bottleneck leads to biologically plausible
  3-factor Hebbian learning in deep networks
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
140
35
0
12 Jun 2020
On Mutual Information Maximization for Representation Learning
On Mutual Information Maximization for Representation Learning
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
179
501
0
31 Jul 2019
Feedback alignment in deep convolutional networks
Feedback alignment in deep convolutional networks
Theodore H. Moskovitz
Ashok Litwin-Kumar
L. F. Abbott
61
61
0
12 Dec 2018
Biologically-plausible learning algorithms can scale to large datasets
Biologically-plausible learning algorithms can scale to large datasets
Y. Chitour
Honglin Chen
Zhenyu Liao
T. Poggio
73
76
0
08 Nov 2018
A Biologically Plausible Learning Rule for Deep Learning in the Brain
A Biologically Plausible Learning Rule for Deep Learning in the Brain
Isabella Pozzi
Michael Felsberg
Fahad Shahbaz Khan
AI4CE
46
31
0
05 Nov 2018
The Variational Deficiency Bottleneck
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
132
7
0
27 Oct 2018
Gradient target propagation
Gradient target propagation
T. S. Farias
Jonas Maziero
28
3
0
19 Oct 2018
Estimating Information Flow in Deep Neural Networks
Estimating Information Flow in Deep Neural Networks
Ziv Goldfeld
E. Berg
Kristjan Greenewald
Igor Melnyk
Nam H. Nguyen
Brian Kingsbury
Yury Polyanskiy
63
32
0
12 Oct 2018
Error Forward-Propagation: Reusing Feedforward Connections to Propagate
  Errors in Deep Learning
Error Forward-Propagation: Reusing Feedforward Connections to Propagate Errors in Deep Learning
Adam A. Kohan
E. Rietman
H. Siegelmann
85
24
0
09 Aug 2018
Assessing the Scalability of Biologically-Motivated Deep Learning
  Algorithms and Architectures
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
92
244
0
12 Jul 2018
Beyond Backprop: Online Alternating Minimization with Auxiliary
  Variables
Beyond Backprop: Online Alternating Minimization with Auxiliary Variables
A. Choromańska
Benjamin Cowen
Yara Rizk
Ronny Luss
Mattia Rigotti
...
Brian Kingsbury
Paolo Diachille
V. Gurev
Ravi Tejwani
Djallel Bouneffouf
75
54
0
24 Jun 2018
Information Constraints on Auto-Encoding Variational Bayes
Information Constraints on Auto-Encoding Variational Bayes
Romain Lopez
Jeffrey Regier
Michael I. Jordan
N. Yosef
BDL
71
124
0
22 May 2018
"Dependency Bottleneck" in Auto-encoding Architectures: an Empirical
  Study
"Dependency Bottleneck" in Auto-encoding Architectures: an Empirical Study
Denny Wu
Yixiu Zhao
Yao-Hung Hubert Tsai
M. Yamada
Ruslan Salakhutdinov
43
10
0
15 Feb 2018
Intriguing Properties of Randomly Weighted Networks: Generalizing While
  Learning Next to Nothing
Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing
Amir Rosenfeld
John K. Tsotsos
MLT
65
51
0
02 Feb 2018
Learning Independent Features with Adversarial Nets for Non-linear ICA
Learning Independent Features with Adversarial Nets for Non-linear ICA
Philemon Brakel
Yoshua Bengio
OODCML
63
94
0
13 Oct 2017
Nonlinear Information Bottleneck
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
55
156
0
06 May 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
111
1,416
0
02 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
128
1,728
0
01 Dec 2016
A Powerful Generative Model Using Random Weights for the Deep Image
  Representation
A Powerful Generative Model Using Random Weights for the Deep Image Representation
Kun He
Yan Wang
John E. Hopcroft
110
77
0
15 Jun 2016
Towards Biologically Plausible Deep Learning
Towards Biologically Plausible Deep Learning
Yoshua Bengio
Dong-Hyun Lee
J. Bornschein
Thomas Mesnard
Zhouhan Lin
DRLOOD
82
352
0
14 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Kickback cuts Backprop's red-tape: Biologically plausible credit
  assignment in neural networks
Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks
David Balduzzi
Hastagiri P. Vanchinathan
J. M. Buhmann
FAtt
71
71
0
23 Nov 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
234
8,348
0
06 Nov 2014
Random feedback weights support learning in deep neural networks
Random feedback weights support learning in deep neural networks
Timothy Lillicrap
D. Cownden
D. Tweed
C. Akerman
ODL
72
171
0
02 Nov 2014
CNN Features off-the-shelf: an Astounding Baseline for Recognition
CNN Features off-the-shelf: an Astounding Baseline for Recognition
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
159
4,945
0
23 Mar 2014
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLMObjD
191
4,950
0
06 Oct 2013
Hypothesis testing using pairwise distances and associated kernels (with
  Appendix)
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
Dino Sejdinovic
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
124
39
0
02 May 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
531
0
03 Mar 2010
1