ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09611
  4. Cited By
Asymptotic normality, concentration, and coverage of generalized
  posteriors

Asymptotic normality, concentration, and coverage of generalized posteriors

22 July 2019
Jeffrey W. Miller
ArXivPDFHTML

Papers citing "Asymptotic normality, concentration, and coverage of generalized posteriors"

15 / 15 papers shown
Title
A detailed treatment of Doob's theorem
A detailed treatment of Doob's theorem
Jeffrey W. Miller
46
28
0
09 Jan 2018
Efficient Bayesian inference for exponential random graph models by
  correcting the pseudo-posterior distribution
Efficient Bayesian inference for exponential random graph models by correcting the pseudo-posterior distribution
Lampros Bouranis
Nial Friel
Florian Maire
34
25
0
04 Oct 2015
Calibration of conditional composite likelihood for Bayesian inference
  on Gibbs random fields
Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields
Julien Stoehr
Nial Friel
33
11
0
06 Feb 2015
Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems
Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems
Maxim Panov
V. Spokoiny
80
44
0
29 Oct 2013
On the Bayes-optimality of F-measure maximizers
On the Bayes-optimality of F-measure maximizers
Willem Waegeman
Krzysztof Dembczyñski
Arkadiusz Jachnik
Weiwei Cheng
Eyke Hullermeier
361
105
0
17 Oct 2013
Inconsistency of Pitman-Yor process mixtures for the number of
  components
Inconsistency of Pitman-Yor process mixtures for the number of components
Jeffrey W. Miller
M. Harrison
60
101
0
30 Aug 2013
A General Framework for Updating Belief Distributions
A General Framework for Updating Belief Distributions
Pier Giovanni Bissiri
Chris Holmes
S. Walker
131
472
0
27 Jun 2013
A Bernstein-von Mises theorem for smooth functionals in semiparametric
  models
A Bernstein-von Mises theorem for smooth functionals in semiparametric models
I. Castillo
Judith Rousseau
80
117
0
20 May 2013
The Bernstein-von Mises theorem and nonregular models
The Bernstein-von Mises theorem and nonregular models
N. Bochkina
P. Green
66
32
0
14 Nov 2012
Nonparametric Bernstein-von Mises theorems in Gaussian white noise
Nonparametric Bernstein-von Mises theorems in Gaussian white noise
I. Castillo
Richard Nickl
93
147
0
19 Aug 2012
Bayesian inference for Gibbs random fields using composite likelihoods
Bayesian inference for Gibbs random fields using composite likelihoods
Nial Friel
AI4CE
49
14
0
24 Jul 2012
Asymptotics for minimisers of convex processes
Asymptotics for minimisers of convex processes
N. Hjort
D. Pollard
60
231
0
19 Jul 2011
The semiparametric Bernstein-von Mises theorem
The semiparametric Bernstein-von Mises theorem
Peter J. Bickel
B. Kleijn
97
125
0
01 Jul 2010
Bayesian Inference from Composite Likelihoods, with an Application to
  Spatial Extremes
Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes
M. Ribatet
D. Cooley
A. Davison
143
183
0
27 Nov 2009
Gibbs posterior for variable selection in high-dimensional
  classification and data mining
Gibbs posterior for variable selection in high-dimensional classification and data mining
Wenxin Jiang
M. Tanner
64
116
0
31 Oct 2008
1