Gibbs random fields play an important role in statistics, for example the autologistic model is commonly used to model the spatial distribution of binary variables defined on a lattice. However they are complicated to work with due to an intractability of the likelihood function. It is therefore natural to consider tractable approximations to the likelihood function. Composite likelihoods offer a principled approach to constructing such approximation. The contribution of this paper is to examine the performance of a collection of composite likelihood approximations in the context of Bayesian inference.
View on arXiv