ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07504
  4. Cited By
Subspace Inference for Bayesian Deep Learning

Subspace Inference for Bayesian Deep Learning

17 July 2019
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Subspace Inference for Bayesian Deep Learning"

30 / 30 papers shown
Title
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
Xinming Zhang
Ninghui Li
102
1
0
28 Jan 2025
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
47
8
0
05 Jun 2024
Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in
  Deep Generative Models for Molecular Design
Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design
A. N. M. N. Abeer
Sanket R. Jantre
Nathan M. Urban
Byung-Jun Yoon
49
1
0
30 Apr 2024
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
26
1
0
10 Oct 2023
Learning Active Subspaces for Effective and Scalable Uncertainty
  Quantification in Deep Neural Networks
Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Sanket R. Jantre
Nathan M. Urban
Xiaoning Qian
Byung-Jun Yoon
BDL
UQCV
26
4
0
06 Sep 2023
Sparse Weight Averaging with Multiple Particles for Iterative Magnitude
  Pruning
Sparse Weight Averaging with Multiple Particles for Iterative Magnitude Pruning
Moonseok Choi
Hyungi Lee
G. Nam
Juho Lee
32
2
0
24 May 2023
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
32
7
0
01 Dec 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image
  Problems
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
21
5
0
28 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
LGV: Boosting Adversarial Example Transferability from Large Geometric
  Vicinity
LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
35
51
0
26 Jul 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
177
35
0
20 May 2022
Low-Loss Subspace Compression for Clean Gains against Multi-Agent
  Backdoor Attacks
Low-Loss Subspace Compression for Clean Gains against Multi-Agent Backdoor Attacks
Siddhartha Datta
N. Shadbolt
AAML
26
6
0
07 Mar 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng-Wei Zhang
42
4
0
18 Jan 2022
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
38
21
0
10 Oct 2021
Connecting Low-Loss Subspace for Personalized Federated Learning
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
24
18
0
16 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
38
1,111
0
07 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
58
289
0
28 Jun 2021
Multivariate Deep Evidential Regression
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDL
PER
EDL
UQCV
35
21
0
13 Apr 2021
Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
27
85
0
20 Feb 2021
Bayesian Methods for Semi-supervised Text Annotation
Bayesian Methods for Semi-supervised Text Annotation
Kristian Miok
Gregor Pirš
Marko Robnik-Šikonja
BDL
34
5
0
28 Oct 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
21
7
0
25 Sep 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
13
36
0
19 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
38
46
0
20 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,266
0
09 Jun 2012
1