ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07035
  4. Cited By
Structured Variational Inference in Unstable Gaussian Process State
  Space Models

Structured Variational Inference in Unstable Gaussian Process State Space Models

16 July 2019
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
ArXivPDFHTML

Papers citing "Structured Variational Inference in Unstable Gaussian Process State Space Models"

23 / 23 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
138
10,591
0
17 Feb 2020
Calibrated Model-Based Deep Reinforcement Learning
Calibrated Model-Based Deep Reinforcement Learning
Ali Malik
Volodymyr Kuleshov
Jiaming Song
Danny Nemer
Harlan Seymour
Stefano Ermon
81
55
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
63
30
0
13 Jun 2019
Non-Factorised Variational Inference in Dynamical Systems
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
39
6
0
14 Dec 2018
Towards Efficient Full Pose Omnidirectionality with Overactuated MAVs
Towards Efficient Full Pose Omnidirectionality with Overactuated MAVs
K. Bodie
Zachary Taylor
Mina Kamel
Roland Siegwart
15
38
0
15 Oct 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
137
1,263
0
30 May 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic
  Priors
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
41
135
0
28 May 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
44
121
0
31 Jan 2018
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
97
217
0
20 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
168
5,774
0
14 Jun 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
52
111
0
30 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
61
418
0
24 May 2017
Safe Model-based Reinforcement Learning with Stability Guarantees
Safe Model-based Reinforcement Learning with Stability Guarantees
Felix Berkenkamp
M. Turchetta
Angela P. Schoellig
Andreas Krause
108
845
0
23 May 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
56
452
0
30 Sep 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
159
4,748
0
04 Jan 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
53
160
0
23 Nov 2015
Recurrent Gaussian Processes
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
43
75
0
20 Nov 2015
Translating Videos to Natural Language Using Deep Recurrent Neural
  Networks
Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan
Huijuan Xu
Jeff Donahue
Marcus Rohrbach
Raymond J. Mooney
Kate Saenko
80
951
0
15 Dec 2014
Variational Gaussian Process State-Space Models
Variational Gaussian Process State-Space Models
R. Frigola
Yutian Chen
C. Rasmussen
BDL
33
177
0
18 Jun 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
563
23,235
0
03 Jun 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
63
1,226
0
26 Sep 2013
Bayesian Inference and Learning in Gaussian Process State-Space Models
  with Particle MCMC
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC
R. Frigola
Fredrik Lindsten
Thomas B. Schon
C. Rasmussen
76
149
0
12 Jun 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
163
2,605
0
29 Jun 2012
1