ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06890
  4. Cited By
A General Framework for Uncertainty Estimation in Deep Learning

A General Framework for Uncertainty Estimation in Deep Learning

16 July 2019
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
    UQCV
    BDL
    OOD
ArXivPDFHTML

Papers citing "A General Framework for Uncertainty Estimation in Deep Learning"

8 / 8 papers shown
Title
Efficient Evaluation of Multi-Task Robot Policies With Active Experiment Selection
Efficient Evaluation of Multi-Task Robot Policies With Active Experiment Selection
Abrar Anwar
Rohan Gupta
Zain Merchant
Sayan Ghosh
Willie Neiswanger
Jesse Thomason
OffRL
90
1
0
14 Feb 2025
MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation
MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation
Taha Koleilat
Hojat Asgariandehkordi
H. Rivaz
Yiming Xiao
MedIm
VLM
65
8
0
28 Sep 2024
Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners
Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners
Zhi Zheng
Qian Feng
Hang Li
Alois C. Knoll
Jianxiang Feng
115
6
0
01 Jun 2024
Deep Drone Racing: Learning Agile Flight in Dynamic Environments
Deep Drone Racing: Learning Agile Flight in Dynamic Environments
Elia Kaufmann
Antonio Loquercio
René Ranftl
Alexey Dosovitskiy
V. Koltun
Davide Scaramuzza
34
135
0
22 Jun 2018
Deep Generative Markov State Models
Deep Generative Markov State Models
Hao Wu
Andreas Mardt
Luca Pasquali
Frank Noe
AI4CE
25
60
0
19 May 2018
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
Daniele Palossi
Antonio Loquercio
Francesco Conti
Eric Flamand
Davide Scaramuzza
Luca Benini
193
158
0
04 May 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
52
525
0
18 Apr 2018
Tractable Inference for Complex Stochastic Processes
Tractable Inference for Complex Stochastic Processes
Xavier Boyen
D. Koller
TPM
55
659
0
30 Jan 2013
1