ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06422
  4. Cited By
Vid2Param: Modelling of Dynamics Parameters from Video

Vid2Param: Modelling of Dynamics Parameters from Video

15 July 2019
Martin Asenov
Michael G. Burke
Daniel Angelov
Todor Davchev
Kartic Subr
S. Ramamoorthy
    VGen
ArXivPDFHTML

Papers citing "Vid2Param: Modelling of Dynamics Parameters from Video"

5 / 5 papers shown
Title
Sim2Sim Evaluation of a Novel Data-Efficient Differentiable Physics
  Engine for Tensegrity Robots
Sim2Sim Evaluation of a Novel Data-Efficient Differentiable Physics Engine for Tensegrity Robots
Kun Wang
Mridul Aanjaneya
Kostas Bekris
16
15
0
10 Nov 2020
A First Principles Approach for Data-Efficient System Identification of
  Spring-Rod Systems via Differentiable Physics Engines
A First Principles Approach for Data-Efficient System Identification of Spring-Rod Systems via Differentiable Physics Engines
Kun Wang
Mridul Aanjaneya
Kostas Bekris
PINN
10
21
0
28 Apr 2020
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
Dieter Fox
PINN
3DPC
AI4CE
178
161
0
15 Jun 2018
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,401
0
01 Dec 2016
1